
CNPS52-89-039
00 NAVAL POSTGRADUATE SCHOOL
N Monterey, California

SEp 03,1999

#D
THESIS

INTEGRATED SUPPORT FOR
MANIPULATION AND DISPLAY OF 3D
OBJECTS FOR THE COMMAND AND

CONTROL WORKSTATION

OF THE FUTURE

by

Steven Alfred Munson

June 1989

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited
Prepared for:

Naval Ocean Systems Center Naval Underwater Systems Center
Code 402 Combat Control Systems Division
San Diego, CA 92152 Building 1171/1

Newport, R1 02841

ammam qqiamlm i(imiml4.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the United States
Naval Underwater Systems Center, Newport, Rhode Island and United States Naval Ocean
Systems Center, San Diego, California. The work was funded by the Naval Postgraduate
School.

Reproduction of all or part of this report is authrized.

This thesis is issued as a technical report with the concurrence of:

MICHAEL J. ZY A
Associate Professor
of Computer Science

Reviewed by: Released by:

ROBERT B. MC KNEALE T.
Chairman Dean of Information
Department of Computer Science and Policy Science

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASS'r!CATION)b RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Nava] Postgraduate School 37 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMOER
ORGANIZATION (If applicable) Direct Funding
Naval Postgraduate School I

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Monterey, CA. 93943 FLEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification) INTEGRATED SUPPORT FOR MANIPULATION AND DISPLAY OF 3D OBJECTS
FOR THE COMMAND AND CON [ROL WORKSTATION OF THE FUTURE

12. PERSONAL AUTHOR(S) Munson, Steven A.

13a. TYPE OF REPORT 13b. TIWt LU)VERt) 1T4. DATE OF REPORT ,Year, %,onth, Day) 15. PAGE COUNT
Master's Thesis FROM0 TO I June 1989 117

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Covernment

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Inexpensive; Graphics; Workstation; 3D; CCWF

Command and Control; Display of 3D Objects

19. AB TRACT (Continue on reverse if necessary and identify by block number)
The Command and Control Workstation of the Future (CCWF) demands a variety of platforms in
various configurations to accurately reflect the environment it is attempting to portray.
Prior to this research, individual platforms for the CCWF and other simulations at NPS have
been coded directly into each individual program, with no commonality of design or ability
to readily share or modify individual platforms. The goal of this researcb is to develop
a text-based file format for the description, modificaLion and display of 3D objects in the
CCWF and other simulations. The other primary goals of this research are the development of
interactive, graphical routines to display, view, modify and then save current objects into
new files; to permit conversion of text object files to binart format for compressed storage;
and to develop routines that enable the CCWF and other simulations to import objects from
libraries of such 3D files directly into their programs, Nnd display them.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
KUNCLASSIFIEDUNLIMITED 0] SAME AS RPT. El DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) ,2c OFFICE SYMBOL
Prof. Mic:,.el J. Lyda 408-646-2305 Code Co

DD FORM 1473, 84 MAR d3 APR edition may be used until exhausted SECURITY CLASSIFICATION (..F THIS PAGE
All other editions are obsolete 0 U.S. Gove-.M ftlvvin,, offie, 1m1-111 s441 .. G vln lf|P'nl ! o f~l 1 1-0 -4

Approved for public release; distribution is unlimited

INTEGRATED SUPPORT FOR MANIPULATION AND DISPLAY
OF 3D OBJECTS FOR THE COMMAND AND CONTROL

WORKSTATION OF THE FUTURE

by

Steven Alfred Munson
Lieutenant, United States Coast Guard

B.S., United States Coast Guard Academy, 1982

Submitted ;- 9.",al fulfillrmcnt of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author:

Steven Alfrea Munson

Approved By:

Michael J. Zyda, Tesis Advisor

Lohn M. YurtS, Second-Re' -,

Robert B. McGhee, Chairman, - - :.
Department of Computer Science ..

Kneale T.l.: Mar K Zt ...A-.

Dean of Information and Policy Sciences i : .-
A

ABSTRACT

The Command and Control Workstation of the Future (CCWF) demands a vari-

ety of platforms in various configurations to accurately reflect the environment it is at-

tempting to portray. Prior to this research, individual platforms for the CCWF and

other simulations at NPS have been coded directly into each individual program, with

no commonality of design or ability to readily share or modify individual platforms.

The goal of this research is to develop a text-based file format for the description,

modification and display of 3D objects in the CCWF and other simulations. The oth-

er primary goals of this research are the development of interactive, graphical routines

to display, view, modify and then save current objects into new files; to permit con-

version of text object files to binary format for compressed storage; and to develop

routines that enable the CCWF and other simulations to import objects from libraries

of such 3D files directly into their programs, and display them.

iii

TABLE OF CONTENTS

i. THE NEED FOR A STANDARD FILE FORMAT ... 1

A. CURRENT NPS REAL-TIME VISUAL SIMULATORS 1

B IRIS GRAPHICS PORTABILITY ... 2

C. Tf[' STANDARD FILE FORMAT CONCEPT 3

II. THE OBJEC.' FILE FORMAT - ASCII VERSION .. 5

A. DETERMINATION OF FILE TOKENS .. 5

B. HOW TOKENS RELATE TO IRIS GRAPHICS 6

C. EDITABILTY OF THE ASCII FORMAT .. 12

Ill. THE OBJECT FILE FCRMAT - BINARY ... 14

A. ARRANGEMENT OF THE BINARY FILE ... 14

B. TOKEN GROUPINGS AND REQUIRED ELEMENTS 14

IV. THE DYNAMIC OBJECT STRUCTURE ... 23

A. THE PREMISE OF THE STRUCTURE .. 23

B. GENERIC NODES AND POINTERS ... 25

C. ORDERING OF ELEMENTS WITHIN THE LISTS 27

D. LIST HANDLING ROUTINES .. 27

V. THE FILE CONVERSION TOOL ... 36

A. CONVERTING ASCII TO BINARY ... 36

B. CONVERTING BINARY TO ASCII ... 37

C. A SAMPLE BINARY CONVERSION DISCUSSED 37

D. A SAMPLE ASCII CONVERSION DISCUSSED 38

E. OTHER CONVERSIONS ... 40

iv

VI. THE PREVIEW PROGRAM .. 42

A. THE NEED FOR SUCH A TOOL ... 42

B. HOW OBJECTS ARE DISPLAYED IN PREVIEW 43

C. THE OBJECT ORIGIN .. 54

D. MODIFYING ACTUAL OBJECT DATA .. 55

E. RESOLUTION LEVELS .. 56

F. SAVING THE MODIFIED OBJECT ... 57

VII. INTEGRATING OBJECTS INTO OTHER PROGRAMS 59

A. THE MAJOR DIFFEREICES .. 59

B. THE ROUTINES NEEDED ... 62

C. ACTUAL IMPLEMENTATION .. 63

VIII. LIMITATIONS OF THE FILE FORMAT AND TOOLS 69

A. RESOLUTION .. 69

B. AUTOMATIC OBJECT GENERATION .. 70

C. PERFORMANCE DEGRADATION ... 70

IX. CONCLUSIONS AND FUTURE WORK .. 72

APPENDIX A THE ASCII FILE FORMAT .. 74

APPENDIX B THE BINARY FILE FORMAT ... 81

A. THE BINARY TOKENS .. 81

B. LAYOUT OF THE BINARY FILE .. 82

APPENDIX C UNDERSTANDING LEX .. 87

A . W H A T IS LEX .. 87

B. IMPORTANT FEATURES OF LEX ... 87

C. THE USE OF LEX IN THE OFF ... 88

D. ADDING NEW TOKENS TO THE OFF ... 88

v

APPENDIX D PREVIEW USERS MANUAL .. 92

A. AN OVERVIEW OF PREVIEW .. 92

B. HOW TO USE PREVIEW ... 92

C. THE PREVIEW WINDOWS ... 93

D. OTHER WINDOWS ... 94

E. SELECTING PREVIEW OPTIONS ... 94

F. THE PREVIEW OPTIONS ... 96

1. Changing The View of the Object .. 96

2. Object Data Modification ... 97

4. O bject Resolution ... 99

G. CREATING NEW OBJECT FILES .. 101

H. WIRE FRAME MODE .. 101

LIST O F R EFEREN CES .. 103

INITIAL DISTRIBUTION LIST ... 104

vi

LIST OF FIGURES

Figure 2.1 Sample Title, Date, Origin, Include and Comment 7

Figure 2.2 Sample Defline Tokens and Data ... 8

Figure 2.3 Sample Polygon and Surface Definitions ... 9

Figure 2.4 Sample Lighting Model Definition ... 10

Figure 2.5 Sample Light Definition ... 10

Figure 2.6 Sample Material and Color Tokens .. 1

Figure 3.1 Binary Storage for Title, Date and Comment 15

Figure 3.2 Storage of a Light Definition ... 16

Figure 3.3 Storage of a Lighting Model Definition .. 19

Figure 3.4 Material Definition Storage .. 20

Figure 3.5 Storage of Defcolor, Origin, Setmaterial, Setcolor 21

Figure 3.6 Line, Polygon and Surface Storage ... 22

Figure 4.1 Object Header Definition Code ... 24

FigO.rc 4.2. O'j. Draw List T!!utrated ... 26

Figure 4.3 Node Definition Code .. 27

Figure 4.4 Double Node and Generic Pointer ... 28

Figure 4.5 Node insertiuon Illustrated ... 29

Figure 4.6 Allocate Double Node Code .. 31

Figure 4.7 Code to Check for Empty List .. 32

Figure 4.8 Double Insert Routine Code ... 34

Figure 4.9 Double Append Routine Code .. 35

Figure 5.1 Code to Convert an ASCII Title to Binary 39

vii

Figure 5.2 Code to Convert Binary Date to ASCII ... 40

Figure 6.1 Node Insertion with Same Material Illustrated 46

Figure 6.2 Node Insertion with Different Materials Illustrated 47

Figure 6.3 Lighting M odel Setup Code .. 49

Figure 6.4 Partial Listing of Light Setup Code .. 50

Figure 6.5 Remainder of Light Setup Code .. 51

Figure 6.6 Current Material Setup Code ... 52

Figure 6.7 Color Setup Code .. 53

Figure 7.1 Polygon, Line and Surface Structure Definitions 60

Figure 7.2 Initializer Code for Lines, Polygons and Surfaces 61

Figure 7.3 Sample Beginning Program Code with Included Files 63

Figure 7.4 First Section of File Type Checking Code 64

Figure 7.5 Remainder of File Type Checking Code .. 65

Figure 7.6 Read O bject File Code ... 67

Figure 7.7 Sample Use of Integrated Routines and Object Display 68

Figure A. 1 Sample Use of yylexO Routine ... 75

Figure A.2 Partial Sample 3D Object File in ASCII OFF Format 79

Figure A.3 Completion of Sample 3D Object File in ASCII OFF Format 80

Figure C. I Code Executed for File Include ... 90

Figure C.2 Code Executed Upon End of File Condition 91

Figure D. I V iewport Menu Options 95

Figure D.2 Main Tools Window Menu .. 95

Figure D .3 Slider Bar M enu ... 96

Figure D.4 Normal's Slider Bar Menu 98

Figure D .5 Resolution Slider Bars M enu .. 100

viii

ACKNOWLEDGEMENTS

I would like to thank Captain Emil Velez, USA, who worked with me on a begin-

ning graphics project that laid some important groundwork for this thesis, including

code for object data modification. He also provided the initial programs for converting

objects in the standard IRIS format to the OFF format.

I would also like to thank Captain Charles Phillips, USA, who developed the 3D

objects currently used in the CCWF. These objects were converted to ihe OFF- and

used to test and debug the code for this thesis work.

I also extend my thanks to Lieutenant Michael DeHaemer, USN, who developed

an initial draft of the ASCII file format, as well as the first draft of the Lex object

code. His assistance in getting this project started was invaluable.

Finally, I wish to thank Professor Michael J. Zyda, whose patience, persever-

ance and guidance allowed this work to be completed. It is impossible to measure the

difficulty of controlling the volatile mix of unbridled enthusiasm and complete inexperi-

ence this thesis student embodied. Somehow, he managed.

ix

I. THE NEED FOR A STANDARD FILE FORMAT

A. CURRENT NPS REAL-TIME VISUAL SIMULATORS

The Naval Postgraduate School's Graphics and Video Laboratory has a long his-

tory of developing real-time visua! simulators for various Department of Defense in-

terests. One of he earliest simulators was the Fiber Optic Guided Missile

(FOGM), simulated to fly over the terrain of Fort Hunter Liggett, California. It was

capable of displaying a 10 kilometer by 10 kilometer area with vehicles. It was de-

signed and implemented on the IRIS 3120 system [Ref. 11.

An extension to FOGM was the VEH simulator, which limited the terrain area

drawn to the current view direction and angle. This sharply reduced the number of

polygons drawn over the FOGM. VEH was ported to the IRIS 4D/70GT and included

networking capability between compatible IRIS workstations [Ref. 21.

The Moving Platform Simulator (MPS), currently undergoing development, is a

combination of FOGM and VEH. It takes advantage of the advanced graphics capa-

bilities of the IRIS 4D/70GT workstation hardware. Additions to the previous work

are variable terrain color schemes, collision detection, and a lighting model with a

month and hour variable sun light source. Current work on MPS is being conducted to

produce high resolution, (12.5 meter) terrain displays, forward artillery observation

training and line of sight information displays for the FOGM/TOW missile. Addition-

ally, new and more detailed vehicles are being developed for the simulator, including

an MI Abrahms tank.

The Commanders Display System (CDS) was the initial work toward the Com-

mand and Control Workstation of the Future (CCWF) [Ref. 3]. It was designed to

I

provide the contact and tactical data for simulator view programs. The CDS was writ-

ten for the IRIS 2400T workstation, using Navy Tactical Display System (NTDS)

fonts to display the various contacts. The CDS has not been ported to the IRIS

4D/70GT.

From the CDS, the preliminary work on the CCWF took the form of the Surface

View Simulator [Ref. 4]. The Surface View Simulator was designed to display an ar-

ea of operation as would be seen from the bridge of a surface ship or from a helicop-

ter. It featured the use of resolution boundaries, high, medium and low, in order to

permit simulation of areas as large as 26 nautical miles in distance on a real-time ba-

sis.

Presently, the Surface View Simulator work has been suspended in favor of the

Subsurface and Periscope Views for the CCWF. This simulator allows for surface

ship bridge views, as well as subsurface (submarine) viewbig, multiple platforms,

resolution boundaries for real-tune presentation, lighting models and networking ca-

pabilities [Ref. 5].

B. IRIS GRAPHICS PORTABILITY

As can be seen from the multitude of simulator work being conducted at NPS, it

is highly desirable to develop simulators that can be easily ported to upgraded models

of the IRIS workstations. Development of these simulators has occurred on all levels

of IRIS machines currently employed by the NPS Graphics and Video Laboratory.

At present, all platforms are coded directly into each simulator, using the IRIS

graphics commands suited to the particular workstation being used, as well as having

the actual , .' -ical object coordinates stored in some formal data structure within

each sir: It should be readily apparent that this format does little to enhance

portability oi '" e simulators from one machine to another, and in fact can hinder

2

such portability. It was the goal of this research to develop a suitable format for the

storage, manipulation and display of 3D objects within the CCWF and other simula-

tions at NPS. This format should be machine independent as far as possible, making

future portability and modification a simple process.

C. THE STANDARD FILE FORMAT CONCEPT

In order to present 3D objects in a manner independent of IRIS workstation soft-

ware and hardware, it was decided to develop an ASCII text format for specifying ob-

jects. Of course, this ASCII specification had to rely on current IRIS capabilities and

limitations, and it is based on the IRIS 4D/7OGT series graphics facilities. However,

the ASCII format does not use IRIS graphics commands, and creates files of objects

that can be updated and modified with any standard text editor. Furthermore, the

code written to recognize and process various parts of the standard ASCII file fonnat

can be easily modified to adapt to variations in future IRIS workstation hardware

and/or software.

It was understood that future objects incorporated into the simulations might

well contain hundreds, if not thousands, of polygons. This is due to the fact that the

IRIS graphics hardware is constantly being upgraded to display more in real-time,

and also to the presence of ongoing research at NPS to produce high resolution ob-

jects for the IRIS from 3D digitizer camera imaging. Since this will inevitably be the

case, ASCII storage of such object formats was considered too memory intensive. To

rectify this foreseen problem, a binary format of the object files has been developed,

along with conversion tools to freely convert from one form to the other.

The remainder of this work explores the file formats currently being used for 3D

object storage, their usage in previewing, modifying and storing new object files, the

3

conversion between formats, and the integration of these routines into current and fu-

ture simulations.

4

U. THE OBJECT FILE FORMAT - ASCII VERSION

A. DETERMINATION OF FILE TOKENS

In determining what the format of the Object File Format (OFF) should be, it

was necessary to consider what might be required to provide accurate information

while limiting the number of recognizable tokens to as few as possible. The ultimate

objective was to create a meaningful yet concise and easy to learn file format.

The IRIS 4D/7OGT workstation, for which this current format was developed, rec-

ognizes planar polygons and lines for graphical display. Furthermore, planar polygons

can be described in terms of their color or material properties for the purposes of light-

ing and/or shading. The IRIS graphics pipeline utilizes Gouraud shading across pla-

nar polygons utilizing normals at each vertex. For polygons without vertex nonnals,

but with a polygon normal specified, the polygon's color is uniform and determined by

currently bound material characteristics, as well as those of the current lighting model

and active lights. Polygons without normals of any kind are a uniform, specified color.

Lines are described only by color, and are not modifiable within the current IRIS light-

ing models. That is, lines are a uniform, specified color regardless of current lighting

models or lights defined. In fact, if lines are drawn with the IRIS in the "lighting ac-

tive" mode, all lines are drawn black in color. Lines must be drawn with the lighting

mode inactive to be shown in their properly set colors [Ref. 61.

Beyond these needed distinctions, it was necessary for the file format to cover

the creation of lighting models, lights, and material and color definitions. Additionally,

it was deemed appropriate for a clearly distinguished object title and (late to be includ-

ed, separate from other commenting capability. This would allow the object's title

' 5

and date to be easily recognized and, if desired, displayed in any program incorporat-

ing that file. Further, some form of file inclusion capability was deemed highly desir-

able, allowing the creation and easy use of "libraries" containing material, color,

modeling and lighting definitions. Finally, it was desirable that the format allow as

much free-format commenting as possible, so that all object files could be well self-

documented.

B. HOW TOKENS RELATE TO IRIS GRAPHICS

The tokens selected to perform these file functions had to relate in some intelligi-

ble way to IRIS graphics commands, so that the mental process of creating file ele-

ments was straightforward. However, it was also desirable for tokens to utilize

standard English key words as much as possible, freeing the format from direct corre-

lation to any particular IRIS feature in order to enhance future portability.

For a complete, detailed listing of the specific token formats, please refer to Ap-

pendix A. The tokens are presented more briefly here. The tokens that do not pertain

directly to the graphics portion of the file are: title, date, origin, include, and any com-

ments. The title and date are strings designed to identify the object title and the date

of creation or last file modification. The origin token allows specification of the ob-

ject's origin, the position about which it is graphed, rotated, translated, etc. The de-

fault origin assumed is (0.0 0.0 0.0) if none is specified. The include token causes

input to then be taken from the specified file, resuming after the end of that file at the

current file position. Comments are designed to enhance self-documentation and

clarity.

Comments follow the standard C language commenting conventions. That is,

comments are contained within a pair of "/* */" markers. Unlike the C language con-

vention, however, the limitations on token identification imposed by use of the Lex

6

generated lexical analyzer yield a maximum allowable token length of 200 characters.

For this reason, all comments in the OFF should be limited to at most two lines.

Consecutive lines of comments are not a problem. Figure 2.1 shows a sample of the

title, date, origin, include and comment tokens.

/* My first sample object file */

/* the object title is the following */
title "My First Carrier"

/* file created */
date 15 May 1989

/* origin is other than standard 0 0 0 */
origin
0.0 5.0 -10.0

/* be sure to read materials defined for the carrier */
include "Carrier.materials"

Figure 2.1 Sample Title, Date, Origin, Include and Comments

Lines are defined by the defline token. Each defline is followed by an integer

number specifying the number of line segment vertices, and then x y z triples of float-

ing point vertex coordinates. These coordinates are graphed from within an IRIS

'bgnlineO endlineO' sequence of commands. Figure 2.2 shows sample line defini-

tions and associated data.

Planar polygons are obliged to have either a single polygon normal or vertex nor-

mals. The former case is referred to as a "polygon" in the OFF, and the latter is a

"surface." Each is handled a bit differently.

Polygons are identified by a defpoly token. Following this is the x y z triple

showing the normalized (unit length) polygon normal vector. This, in turn, is followed

by the number of vertices, then x y z vertex triples. The vertices are graphically

7

displayed by an IRIS 'bgnpolygon0 endpolygono' sequence, utilizing the single

polygon normal for lighting calculations. Figure 2.3 shows sample polygon definitions.

/* lines for carrier antennas */

defline
4
-86.000000 26.000000 39.000000
-85.000000 40.000000 38.000000
-83.000000 40.000000 38.000000
-82.000000 26.000000 39.000000

defline
4
-86.000000 26.000000 35.000000
-85.000000 40.000000 36.000000
-83.000000 40.000000 36.000000
-82.000000 26.000000 35.000000

Figure 2.2 Sample Defline Tokens and Data

Surfaces are identified by a defsurface token. This is followed by the number of

vertices in the surface, then by x y z i j k sextuples of vertices and normalized (unit

length) vertex normals. The vertices are again graphically displayed from within an

IRIS 'bgnpolygon0 endpolygono' sequence, but with normals specified at each

vertex. Figure 2.3 shows sample surface definitions.

Lighting models are identified by the deflmodel token. The file can then modify

any of the IRIS lighting model features, including ambient background color, lighting

attenuation calculations, and whether the viewer position is local or not. Atuibutes of

the lighting model not specified are set to current IRIS default values. The end of the

model definition is determined by the use of the defend token. Figure 2.4 shows a

sample lighting model definition.

8

/* some sample polygons, complete with normals */

defpoly
-0.422903 -0.640762 0.640762
3
0.000000 0.000000 0.000000
-0.500000 0.220000 -0.110000
-0.500000 0.110000 -0.220000

defpoly
-0.402739 0.000000 0.915315
3
0.000000 0.000000 0.000000
-0.500000 0.110000 -0.220000
-0.500000 -0.110000 -0.220000

/* here are some cube face surfaces */
defsurface
4
20.000000 20.000000 20.000000 0.333333 0.333333 0.333333
20.000000 20.000000 -20.000000 0.333333 0.333333 -0.333333
20.000000 -20.000000 -20.000000 0.333333 -0.333333 -0.333333
20.000000 -20.000000 20.000000 0.333333 -0.333333 0.333333

defsurface
4
20.000000 20.000000 20.000000 0.333333 0.333333 0.333333
20.000000 20.000000 -20.000000 0.333333 0.333333 -0.333333
-20.000000 20.000000 -20.000000 -0.333333 0.333333 -0.333333
-20.000000 20.000000 20.000000 -0.333333 0.333333 0.333333

Figure 2.3 Sample Polygon and Surface Definitions

9

/* sample light model showing all attributes */

defimodel
ambient 0.2 0.2 0.2
localviewer 1.0
attenuation 1.0 0.5
defend

Figure 2.4 Sample Lighting Model Definition

Lights are identified by the deffight token. The IRIS light attributes can be modi-

fied from their default values. These attributes include the light's ambient contribu-

tion, its color and its position. The position is specified by four floating point

numbers. The first three are an x, y and z coordinate in three dimensional space. The

fourth value indicates whether the light is at infinite distance or is a local light. hi the

former case, the position is actually a direction to the infinite light source. In the lat-

ter, it is an actual light position. Again, defend signals the end of the current defini-

tion. Figure 2.5 shows a sample light definition.

/* sample light definition of a red light */

deflight redlight
ambient 0.1 0.5 0.5
lcolor 0.0 1.0 0.0
position 13.0 35.0 10.0 1.0
defend

Figure 2.5 Sample Light Definition

Material definitions for polygon material composition are identified by the defma-

terial token. The material must be named for future reference within the object file.

IRIS material properties can be modified from their default values. These propetlies

include material emission color, ambient color, diffuse color, specular highlighting

10

color, shininess and the material's alpha value, used in IRIS lighting calculations.

Once again, defend signals the end of material attributes. A sample material defini-

tion is found in Figure 2.6.

Colors used in line drawing are identified by the defcolor token. The color must

be named for future reference. This is followed by three floating point values, be-

tween 0.0 and 1.0, which correspond, respectively, to the red, green and blue compo-

nent of the color. Colors are activated by use of the IRIS c3fO call. A sample color

definition is found in Figure 2.6.

/* examples of defining and setting */
/* materials and colors */

/* first, a material */
defmaterial gold

ambient 0.4 0.2 0.0
diffuse 0.9 0.5 0.0
specular 0.7 0.7 0.0
shininess 10.0
defend

setmaterial gold

/* now a color */

/* color name quoted because it is contains a blank space */
defcolor "Antenna Color"
0.0 0.0 0.0

setcolor "Antenna Color"

Figure 2.6 Sample Material and Color Tokens

Materials are set, or activated, for all future surfaces and polygons by use of the

setmaterial token. This token is followed by the name of the material to be used.

Thereafter, until another setmaterial is invoked, all polygons and surfaces will be of

this maiterial type. A sample use of setmaterial is shown in Figure 2.6.

11

Colors for lines are likewise activated by use of the setcolor token, followed by

the name of the color to be used. All future lines are drawn in that color until another

setcolor token is invoked. A sample use of setcolor is shown in Figure 2.6.

For the purposes of the preview program tool, and simulator use in general,

there is no ability to specify planar polygons in the OFF without normals, polygon or

vertex. This is because all simulators currently under development at NPS avail

themselves of the IRIS lighting capabilities, and it is unforeseeable that future simula-

tor research will not follow this path. Therefore, the setcolor token affects q the

color of all further lines, defined by the defline token, in the object file.

As Appendix A illustrates, the names of properties used for lights, lighting mod-

els and materials corresponds directly to the aspect of the IRIS feature which they

represent. However, their exact format can be easily changed in the future without

loss of generality and readability in the OFF.

C. EDITABILTY OF THE ASCII FORMAT

The OFF allows complete control of every aspect of the object's appearance

from within the file. The lighting model, lights used, material and color definitions, use

of lines, as well as use of polygon or vertex normals can all be controlled. At the

same time, the format is easy to read and understand. It can be learned in a few short

minutes. Its free use of commenting makes it possible, though not automatic, to write

well-documented object files.

The fact that the standard format is an ASCII file means that any object file can

be modified from within any standard text editor with which the user may be familiar,

including vi, EMACS, Wordperfect, Appleworks, etc. While it is possible that im-

provements in future IRIS models may modify the properties of lighting models, lights

or material definitions, the OFF can easily be adapted to such changes. Lines,

12

polygons and surfaces will doubtless remain unchanged in their format for the foresee-

able future. Similarly, the process of setting materials or colors for use will remain un-

changed in the format. The graphics code behind the format will simply change to

seize upon new IRIS improvements.

13

III. THE OBJECT FILE FORMAT - BINARY

A. ARRANGEMENT OF THE BINARY FILE

As a user of a binary data file should know, in order to read the file successfully

it is imperative that the precise format of the file be known and followed, or meaning-

ful input from the file is impossible. Each of the tokens from the ASCII file format

have been assigned to an integer value. These tokens are thus stored in the binary

format as hiteger3, and these integer tokens are used to detenine the format of the

following data related to each token. There are currently 24 recognizable tokens and

associated integer values.

Each token has a required group of data, in a specific format, that must follow it.

The precise frmlatting is spelled out in detail in Appendix B. and explained more

briefly in section B of this chapter. The order of tokens and their associated data

within the file is irrelevant, except as pertains to setcolor and/or setmaterial tokens,

which control polygon and line colors for all further lines, polygons and surfaces de-

fined in the file.

B. TOKEN GROUPINGS AND REQUIRED ELEMENTS

Each of the allowable tokens is required to be followed by a specified grouping of

data in a fixed format. These tokens and formats are as outlined in the following

paragraphs.

The title token is followed by an integer number n showing the length of the title

(the number of characters in it), then by n characters (see Figure 3. 1).

14

The date token is followed by an integer number n showing the length of the date

(the number of characters in it), then by n characters (see Figure 3.1).

The comment token is followed by an integer number n showing the length of the

comment (the number of characters in it), then by n characters (see Figure 3.1).

TOKTITLE # of characters character characte

integer integer n chars i
allocation for title token and data

TOK DATE # of characters character [.. I hrcter

i nteger I integer n chars

allocation for date token and data

TOK COMMENT I# of characters character . Icat~e

integer i integer nchars

allocation for comment token and data

Figure 3.1 Binary Storage for Title, Date and Comment

The light definition token, deflight, is followed by an integer n indicating the

length of the light's name. This is followed by the n characters of the name. Thereaf-

ter until the defend token is encountered, the following tokens and their associated

data are allowed, in any order: one or more comment tokens, in the format described

above; an Icolor token, followed by three floating point numbers; an ambient token,

followed by three floating point numbers; a position token, followed by four floating

point numbers. Figure 3.2 illustrates this stoi ,ge.

The lighting model definition token is deflmodel. Until the defend token is en-

countered, the following tokens and their associated data are allowed, in any order:

15

light definition starts with the following group

TOK DEFLIGHT # of characters character ° * * * * [h r ter
integer ntger Q n chars I

and may contain the following groups until defend

TOK COMMENT 1# of characters character , , [character j

integer j integer j nchars

ITOK LCOLOR , red component green component Iblue component

integer :1- float float float

TOK-AMBIENT red component green component blue component

integer i float I float I float [

TOK POSITION x coordinate y coordinate z coordinate w coordinate
V integer i: float I float 2i float -

IToKDE EDI

I i nteger

Figure 3.2 Storage of a Light Definition

16

one or more comment tokens, in the format described previously; a localviewer to-

ken, followed by a floating point number; an ambient token, followed by three floating

point numbers; an attenuation token, followed by two floating point numbers. Figure

3.3 illustrates this storage.

The material definition token, defmaterial, is followed by an integer n indicating

the length of the material's name. This is followed by the n characters of the name.

Thereafter, until the defend token is encountered the following tokens and their asso-

ciated data are allowed, in any order: one or more comment tokens, in the fonnat de-

scribed previously; an emission token, followed by three floating point numbers; an

ambient token, followed by three floating point numbers; a diffuse token, followed by

three floating point numbers; a specular token followed by three floating point num-

bers; a shininess token followed by one floating point number; an alpha token, fol-

lowed by one floating point number. Figure 3.4 illustrates this storage.

The color definition token, defcolor, is followed by an integer it indicating the

length of the color's name. This is followed by the n characters of the name. Finally,

three floating point numbers conclude this token group (see Figure 3.5).

The token origin is followed by three floating point numbers, corresponding to

the x, y and z values of the specified object origin (see Figure 3.5).

The setmaterial token is followed by an integer n indicating the length of the ma-

terial's name. This is followed by the n characters of the name (see Figure 3.5).

The setcolor token is followed by an integer t indicating the length of the color's

name. This is followed by the n characters of the name (see Figure 3.5).

The token to define a line is defline. This is followed by an integer it indicating

the number of vertices to be connected in the line. Finally, 3n floating point numbers

17

follow, giving the x, y and z coordinates of each vertex in the line. Figure 3.6 illus-

trates this storage.

The token to define a polygon is defpoly. This is immediately followed by three

floating point numbers, providing the polygon surface normal x, y and z coordinates.

This is followed by an integer n indicating the number of vertices to be connected in

the polygon. Finally, 3n floating point numbers follow, giving the x, y and z coordi-

nates of each vertex in the polygon (see Figure 3.6).

The token to define a surface is defsurface. This is followed by an integer n in-

dicating the number of vertices to be connected in the surface. Finally, 6n floating

point numbers follow, giving the x, y and z coordinates of each vertex in the surface

followed immediately by the i, j and k vertex normal coordinates (see Figure 3.6).

18

light model definition starts with the following group

TOKDEFLMODEL

K7-inegei

and may contain the following groups until defend

TOKCOMMENT #of characters•character chater

integer integer n chars

TOK-LOCALVIEWER value

integer float

ITOK-AMBIENTI red component I green component I blue component

integer I float I float float

TOK ATTENUATION value 1 value 2

I= integer 1fot1 f

I integer

Figure 3.3 Storage of a Lighting Model Definition

19

material definition starts with the following group

TOK MATERIAI # of characters

integer integer n chars I
and may contain the following groups until defend

TOK COMMENT # of characters character charater

integzr integer nchars

ITOK EMISSION I red component green component blue component

I integer -I float I float -1q float

TOK AMBIENT red component green component Iblue component

I integer I float float i float

I-TOK DIFFUSE red component green component blue component

i integer I float I float i float

ITOK SPECULARI red component green componet blue component

integer I1r float I float float

TOK SHINiNESS I value TOKALPHA value

I integer I float I I integer I float

FITODEFND I

itege

Figure 3.4 Material Definition Storage

20

color definition consists of the following group

TOKDEFCOLOR # of characteS I character character

integer integer n chars

red component Igreen component blue component

I float I float I float

origin definition consists of the following group

[TOKORIGIN I x coordinate I y coordinate I coordinate I

integer I float I float .a 1

setmaterial consists of the following group

TOK SETMATERIALl" of characters character Ihater

integer integer I-hars

setcolor consists of the following group

TOK SETCOLOR I # of characters character cater

integer integer n chars

Figure 3.5 Storage of Defcolor, Origin, Setmaterial, Setcolor

21

line definition consists of the following group

ITOK DEFLINEI # of vertices x coordinate y coordinate z coordinate.n

l- trrlip f o floainteger I integer -I ntilsofo

polygon definition consists of the following group

TOKDEFPOLY normal x Inormal y normal # of vertices

integer float float I float integer

Ir x coordinate y coordinatel z coordilynoate . . .

n triples of floats

surface definition consists of the following group

TOKDEFSURFACE #of vertices

I integer I integer

vertex x vertex y Ivertex z Inormalix normal y Inormal zI

n sextuples of floats

Figure 3.6 Line, Polygon and Surface Storage

22

IV. THE DYNAMIC OBJECT STRUCTURE

A. THE PREMISE OF THE STRUCTURE

The top-level goal of this research was to permit 3D objects of any size and com-

plexity to be read into some formal data structure, and then displayed in any simulator

or other program in use. Because each object varies radically in the number of lines,

polygons and surfaces, as well as the materials and colors used, a dynamically allo-

cated structure is necessary.

Since interactive previewing and modification tools are desired, traversing

through the object's structure is a requirement. Further, to ensure object structure ro-

bustness, that is to say, to allow future additions and deletions of object elements be-

yond those currently in use, some form of generic structure is ideally suited to be used

here. Therefore, it was decided that ea'± o:bject should be stored in a dynamically al-

located structure, where the object was "stored" in one object header structure that

contained pertinent information such as title, date, object origin, maximum and mini-

mum values, etc., and which contained pointers to the heads and tails of doubly-

linked lists of the object's elements (lines, lights, materials, polygons, etc.). Figure

4.1 shows the code defining the object header structure.

It is impossible to display an object by merely traversing lists of independent ele-

ments. That is, by traversing the list of polygons or surfaces, it is impossible to tell

which material had been selected to use for individual elements. Hence the header

structure also contains a head and tail pointer for a draw list. It can contain up to five

different types of double nodes. These include material, color, line, polygon or surface

no'-.s. Material nodes indicate a change of material to be applied to all future

23

/* define the OBJECTHEADER structure type */
typedef struct object-header OBJECT_HEADER;

struct object-header /* main head node for the project */
I

char *title; /* object title */
char *date; /* date of object file */
float origin[31; /* object origin */
float maxx, * max and min x,y,z */

minx, /P coordinates of the polygons */
maxy, * or surfaces of the object. */
miny,
maxz,
minz;

/P ptrs to head and tail of list of light definitions */
double-ptr head_lightdefs;
double-ptr tail_lightdefs;
* ptrs to head and tail of list of lighting model definitions */

double-ptr headmodeldefs;
double-ptr tail modeldefs;
* ptrs to head and tail of list of material definitions */

double ptr headmaterialdefs;
double-ptr tailmaterialdefs;
P* ptrs to head and tail of list of color definitions */
double-ptr headcolordefs;
double-ptr tailcolordefs;
/* ptrs to head and tail of list of line definitions */
double-ptr headlinedefs;
double-ptr tail_linedefs;
/P ptrs to head and tail of list of polygon definitions */
double-ptr head_pciygondefs;
double-ptr tai! polygondefs;
/P ptrs to head -ijd tail of list of surface definitions */
double-ptr headsurfacedefs;
double-ptr tail-surfacedefs;
* ptrs to head and tail of list of draw list */

double-ptr headdrawlist;
double-ptr taildrawlist;

Figure 4.1 Object Header Definition Code

24

polygons and surfaces, until another material node is encountered. Color nodes indi-

cate a change to be applied to succeeding lines until another color node is encoun-

tered. Lines, polygons and surfaces are object elements to be displayed. Figure 4.2

illustrates the draw list concept.

B. GENERIC NODES AND POINTERS

In order to permit the addition of various structure types to the draw list, as well

as to maintain robustness and standardization between the various lists of elements

in the dynamic object structure, the character pointer was utilized. That is, a type def-

inition was made so that a generic pointer is actually a character pointer. These ge-

neric pointers can then be coerced to point to any structure desired.

Each node in any given doubly-linked list is a double node. It contains two dou-

ble pointers, one to its predecessor node and one to its successor node. A double

pointer has been type defined to be a pointer to a double node structure. There is one

generic pointer in each double node that points to a dynamically allocated structure

where the data is stored for that node. It also contains an integer dtype field indicat-

ing what type of data is being pointed to by the generic pointer. The list's head and

tail double pointers are maintained in the object's header structure. Figure 4.3 pro-

vides the code defining the node structure, pointers and macros.

The result of using double nodes and generic pointers is several fold. First, ap-

pending to or inserting in any doubly-linked list of elements can be accomplished by

one set of primitive append and insert routines. Second, any double node can point to

any data structure the user desires. At present, there are seven such data storage

structures, one each for lights, lighting models, colors, materials, lines, polygons and

surfaces. Finally, any new structures corresponding to new elements added to the

25

This illustrates a sample draw list. Actual elements vary.
NYLL

ma structureo d polygon tudta

structctue

to data to data color to datapolygon structure surface structure structure

Sline to data ><~ line to data
structure. structure

material to data surface data line
structure structure l structure

NULL

polygon to data tail drawlist
structure

Figure 4.2 Object Draw List Illustrated

26

object file format can be easily accommodated using the present node and pointer

structures and list handling routines. Figure 4.4 illustrates the use of double nodes.

/* define what a double node and a pointer to a double node are */
typedef struct node double-node, *double-ptr;

struct node /* generic node in doubly-linked list */

generic-ptr data; /* pointer to any data structure */
int dtype; /* data type indicated by defined tokens */
double-ptr prey; /* pointer to previous node */
double-ptr next; /* pointer to next node */

; /* end node */

/* definition MACROS for use in list handling routines */
#define DATA(L) ((L)->data)
#define DATATYPE(L) ((L)->dtype)
#define NEXT(L) ((L)->next)
#define PREV(L) ((L)->prev)

Figure 4.3 Node Definition Code

C. ORDERING OF ELEMENTS WITHIN THE LISTS

Within each list of elements (lights, materials, surfaces, etc.) for the object, it

was necessary to determine in which order to add new nodes as data was read from

the object file. In general, new nodes are added at the end of each list of elements,

and the tail pointer in the header structure updated. The draw list has elements add-

ed to its end as well, except in the preview tool program, discussed in chapter VI.

Lines, polygons, surfaces, materials and colors are inserted at the tail of the draw list

as they are encountered. Figure 4.5 illustrates this insertion.

D. LIST HANDLING ROUTINES

The routines for handling each of the eight lists in the header structure are the

same. That is, one set of routines handles them all, since they all consist of double

27

The Double Node and Generic Pointer

prev pointer next pointer

noe typ eneric Basic Node Elementsnode type iaa

pointer

double node

hed-ralit material
polygont /

materialef plgne

DA TA DA TA

NULL

headrlinedefs .4o d -n Ge P
linI line e

linedef ie f

DA TA DA TA

NULL

colordef colordef

DA TA DA TA

Figure 4.4 Double Node and Generic Pointer

28

Portion of current draw list prior to insertion

material to data > to data to data
----- structure I surface structure lie structure

NqLL

"1%sufc to data X srae to data X color to datastructureurface structure structure

tail drawlist

Same portion of current draw list after insertion

•"""material to data ><srae to data line to data .
-I structure I srae structure structure

to data r to data clr to data
L c structure r .srae structure structr

olgo to data NL
Pstructure taildrawlist

Figure 4.5 Node Insertion Illustrated

29

nodes. The basic routines accomplish the following tasks: allocating and assigning a

new double node, checking a list to see if it is empty, inserting a new node in front of

an existing node, and appending a node after an existing node.

The allocatedoublenode() routine takes as its arguments a pointer ptr to a dou-

ble node, a generic pointer to the data for the new node, and a node type. This routine

then dynamically allocates a new double node and sets the value of ptr to this allocat-

ed memory. It then sets the drvpe integer flag field of the new double node to the val-

ue of the node type passed in, sets the new node's data pointer to the generic pointer

passed in, and sets the new node's predecessor and successor pointers to NULL.

Figure 4.6 is the code for double node allocation.

The routine to check whether a list is empty merely checks the head of the list to

see if the value of that pointer is NULL. If it is, the function returns TRUE. If not, it

returns FALSE. Figure 4.7 contains the code for this routine.

The doubleinsert() routine takes as one of its arguments a double pointer, ptr,

pointing to the node in the list before which the new node is to be inserted. It also

takes a generic pointer to the data structure of the new node, and an integer data

type. It then calls the routine to allocate a new dcable node, which allocates space

and assigns the data type and generic pointer of the new node. Finally, it updates the

new node's predecessor and successor pointers, as well as the predecessor pointer

of the insertion point (ptr), and the successor pointer of the former predecessor of ptr.

Figure 4.8 shows the code for this routine.

The double appendO routine takes as one of its arguments a double pointer,

ptr, pointing to the node in the list after which the new node is to be inserted. It also

takes a generic pointer to the data structure of the new node, and an integer data

type. It then calls the routine to allocate a new double node, which allocates space

and assigns the data type and generic pointer of the new node. Finally, it updates the

30

/* this routine allocates and establishes a new node for a generic */
/* doubly-linked list, where the pointer to the node is returned via */
/* "ptr" and the data pointed to or linked via the node is provided */
/* by the argument "data", a generic pointer to the data structure */
/* containing the data for that node */
int allocate_double-node(ptr,data,nodetype)

double-ptr *ptr;
generic-ptr data;
int nodetype;

I
/* allocate space for new node in memory, call it item */
double-ptr item = (double ptr)malloc(sizeof(doublenode));

/* check to make sure malloc call worked! *f
if (item == NULL) {

printf("MALLOC FAILURE -- MAJOR PROBLEMS 1\n");
return(FALSE);

/*endif*/

/* set pointer of the node to node "item" for return to the caller */
*ptr = item;

/* using MACROS defined in "filespec.h", assign data and pointers in */
/* the new node */
DATA(item) = data;
NEXT(item) = NULL;
PREV(item) = NULL;
DATATYPE(item) = nodetype;
return(TRUE);

/* end allocate double node */

Figure 4.6 Allocate Double Node Code

31

/* this routine checks to see if a doubly-linked list is empty */
int empty-doublejlist(L)

doubleptr L;
I
return (L == NULL) ? TRUE: FALSE;

} /* end empty double list */

Figure 4.7 Code to Check for Empty List

32

new node's predecessor and successor pointers, as well as the successor pointer of

the insertion point (ptr), and the predecessor pointer of the former successor of ptr.

Figure 4.9 contains the code for this routine.

33

/* this routine inserts a new node into a doubly-linked list in front of */
/* the position pointed to by "ptr", NOT necessarily the start of the list */
int doublejinsert(ptr,data,type)

double ptr *ptr; /* pointer to insertion/starting point in list */
generic-ptr data; /* pointer to data structure */
int type; /* integer flag indicating data structure type */

double-ptr newnode; /* pointer to new node to create and insert */

/* allocate new space, and return error msg if failed */
if (!allocatedoublenode(&newnode,data,type)) (

printf("While trying to insert, allocation for new node failed.\n");
printf("You have MAJOR MEMORY problems. Sorry. Wn");
return(FALSE);
/*end f*/

/* otherwise, go ahead and insert this new node */
/* first case, if list is currently empty */
it (emptydoublelist(*ptr) == TRUE)

PREV(newnode) = NEXT(newnode) = NULL;

/* second case, non-empty list */
}else (

/* new node's next pointer is set to old start */
NEXT(newnode) = *ptr;

/* new node's previous pointer is set to old stan's previous pointer */
PREV(newnode) = PREV(*ptr);

/P old start's previous pointer is now new node */
PREV(*ptr) = newnode;

/* if old start had a previous node, set it's next pointer */
/* to the new node */
if (PREV(newnode) != NULL)

NEXT(PREV(newnode)) = ncwro,e;
/* end if */

I /* end if then else */

/P set old start to new node */
*ptr = newnode;

return(TRUE); /* success */

/* end double insert */

Figure 4.8 Double Insert Routine Code

34

/* this routine adds a new node to a doubly-linked list AFTER the position */
/* pointed to by "ptr", NOT necessarily the end of the list */
int double-append(ptr,data,type)

double-ptr *ptr; /* pointer to insertion point in list */
generic-ptr data; /* pointer to data structure holding data for node */
int type; /* flag indicating data structure type */

doubleptr newnode;

/* allocate new space, and return error msg if failed */
if (!allocatedouble-node(&newnode,data,type)) {

printf("While trying to insert, allocation for new node failed.\n");
printf("You have MAJOR MEMORY problems. Sorry. Wi");
return(FALSE);
/* end if*/

/* otherwise, go ahead and insert this new node */
/* first case, if list is currently empty */
if (empty-double list(*ptr) == TRUE)

PREV(newnode) = NEXT(newnode) -NULL;

/* second case, non-empty list */
}else {

/* new node's next pointer is set to old start's next pointer */
NEXT(newnode) = NEXT(*ptr);

/* new node's previous pointer is set to old start */
PREV(newnode) = *ptr;

/* old start's next pointer is now new node */
NEXT(*ptr) = newnode;

/* if old start had a next node, set it's previous pointer */
/* to the new node */
if (NEXT(newnode) != NULL)

PREV(NEXT(newnode)) = newnode;
/* end if */

/* end if then else

/* set old start to new node */
*ptr = newnode;
return(TRUE); /* success */

/* end double append */

Figure 4.9 Double Append Routine Code

35

V. THE FILE CONVERSION TOOL

The file conversion program tool is called fileconvert. It is located in the

ofJtioo! 'Converi direto'y, .-nd is :.ivokeu by ctntk,ing filtonvert followed by a file

name. For example, to convert the ASCII object file named "Carrier.mine" to its bina-

ry equivalent, the invocation would be:

fileconvert Carrier.mine

Fileconvert determines for itself whether the specified file is in ASCII or binary

OFF format, then invokes the proper conversion routines to perform the conversion to

the other format. No special names or suffixes are required for any object file.

A. CONVERTING ASCII TO BINARY

The routines to convert an object file in the standard ASCII format are located in

files converttobinary.c and writebinary.c. The first file contains the routine to coor-

dinate writing to the output binary file based upon the token read from the input

ASCII file. The second file contains the actual individual token writing routines in-

voked from converttobinary.c.

The code in converttobinary.c first creates and then opens a binary file with the

same name as the input ASCII file, but with the tag ".bin" appended to it. Next, the

input ASCII file is opened. After the input and output files are thus opened, a control

loop is entered that executes until an end of input condition is reached in the ASCII

file.

Based upon the next token read from the input ASCII file, the switch statement

in the control loop invokes a routine to read the appropriate data from the input file

and write it to the binary file. Each of the actual routines are found in the file

36

writebinary.c. Thus the routine is, essentially, one while loop testing for the end of

input condition, with a switch statement nested inside.

When the end of input condition is reached, the main loop exits. The binary file, if

successfully opened, is then closed. Finally, a message is printed to the screen

showing the -,-,e of the new binary file just created.

B. CONVERTING BINARY TO ASCII

Similar to the ASCII to binary conversion, the routines to perform the conversion

from binary to ASCII are located in the files converttoascii.c and writeascii.c. The

former contains the main control routine, while the latter contains the individual rou-

tines invoked to read and write specific token groupings.

The code in converttoascii.c creates and opens an ASCII output file with the

same name as the specified binary input file, but with the tag ".ascii" appended to it.

Next, it opens for input the specified binary file. It then enters a while loop, which

checks for a successful read of the next token from the input file. Inside the while loop

is a switch statement, which evaluates the token read and invokes the appropriate

routine to read the rest of the data for that token, then write the token and data to the

output ASCII file.

Once the end of file condition is reached in the input binary file, the while loop ex-

its. The input and output files are then closed, and a message is printed to the screen

indicating the name of the new ASCII file just created.

C. A SAMPLE BINARY CONVERSION DISCUSSED

To illustrate how a binary conversion is accomplished, consider an ASCII file

containing the title "My First Object". The format of such a title in an object file

would appear similar to: title "My First Object".

37

As the input file tokens are read in the control loop of converttobinary.c, the to-

ken title would be identified and the variable token in that routine would be set to

TOKTITLE. This causes the switch statement to issue a call to

writebinarytitleo, a routine found in writebinary.c. The writebinary_tie0 rou-

tire e-pects that, folowing a title token, the next token returned from the input ASCII

file will be an identifier token. If, in fact, such a token is returned, its value has been

copied into the global variable id. The writebinary_title routine then writes to the

output binary file the TOKTITLE integer token, then the length of the identifier (title

string), then the string itself. This completes the conversion of an ASCII title to its

binary equivalent. Figure 5.1 shows the code used to accomplish this.

D. A SAMPLE ASCII CONVERSION DISCUSSED

To illustrate how an ASCII conversion is accomplished, consider a binary file

containing the date "23 Jan 1989". The format of such a date in an object binary file

would be: TOKDATE (integer), date size (integer), date string (char * date size).

As the input file tokens are read in the control loop of converttoascii.c, the to-

ken date would be identified and the variable token in that routine would be set to

TOKDATE. This causes the switch statement to issue a call to writeascii-dateo,

a routine found in writeascii.c. The writeascii-date(routine expects that, follow-

ing a date token, the next value in the input binary file will be an integer. Using this

integer as a date size guide, memory is allocated for size+1 characters. The date

string is then read from the binary file into this allocated space. An 'end of string'

character is placed at the size+l position. Finally, the writebinarydate routine

writes to the output ASCII file the string "date ", followed on the next line by the date

38

I * this routine writes the ASCII file title. to the binarv file ~

write binary-title(bf)

int bf;

int nexttoken; /* next token in the input stream ~
int firsttoken = TOKTITLE;
int titlesize;

1* get next token from input file *
nexttoken=yylexo;

/* should be an ID -- a "string" "

if (nexttoken==TOKID){
titlesize = strlen(id);
write(bf,&firsttoken,sizeof(int));
write(bf,&titlesize,sizeof(int));
write(bf,id,sizeof(char)* titlesize);

/* if not, error! *
Ielse {
printf("ERROR -- no identifier after key token TITLE \n");
printf('No title written to binary file\n");

return(1);
/* end write binary title *

Figure 5.1 Code to Convert an ASCII Title to Binary

39

string and a new line character. This completes the conversion of a binary (late to its

ASCII equivalent. Figure 5.2 shows the code used for this operation.

/* this routine reads and copies a date to the ASCII file /
writeasciidate(bf,outfile)

FILE *outfile;
int bf;

int datesize; /* size of date string */
char *date;

read(bf,&datesize,sizeof(int));
date = (char *)malloc(sizeof(char)*(datesize+ I));
read(bf,date,sizeof(char)*datesize);
dateldatesizel = 'W0';
fprintf(outfile,"ndate\n");
fprintf(outfile," %s\,n" ,date);

/* end of write-asciidate */

Figure 5.2 Code to Conxert Binary Date to ASCII

E. OTHER CONVERSIONS

The remaining conversions from ASCII to binary, or vice versa, follow the exact

same pattern. The word tokens in the ASCII file are stored as their integer equiva-

lents in the binary file. Integer numbers are stored as integers. Floating point values

are stored as floating point values. ASCII character strings are stored as string

size*char groupings, always preceded by an integer number indicating string size.

When converting from binary to ASCII all identifiers are automatically enclosed

in double quotes, regardless of whether or not they are more than one word in length.

Identifiers are titles, material names, light names or color names. They are stored as

character strings in the binary format without the enclosing double quotes to save

40

space. Comments and date strings are written from binary to ASCII without double

quote enclosure.

41

VI. THE PREVIEW PROGRAM

Preview is the name of the interactive 3D object viewing and modification pro-

grami. Preview is located in the offitoolsipreview directory. It was designed to

permit manipulation of any object in an OFF ASCII or binary file. In this program,

each object is read into the dynamic structure in order of decreasing element size,

largest first, smallest last. Resolution levels, axis orientation, object size and polygon

normals can all be interactively modified by use of this program. Additionally, the 3D

object can be viewed in a "wire frame" adaptation of the normal solid object view. Ap-

pendix D contains a preview user's manual.

A. THE NEED FOR SUCH A TOOL

Standardization is inherently preferable to each programmer doing things in an in-

dividual manner. The OFF was developed so that 3D objects could be shared among

simulations, present and future. However, an object used in one simulation might

need to be scaled or otherwise modified for use in another simulation. For instance,

one simulation might make vehicle or vessel course calculations based on all vehicles

being oriented "facing north," or compass 0 degrees, in their file specification. Another

might wish to base such calculations on geometric/mathematic 0 degrees, with vehi-

cles "facing east" in their file specification.

Another common problem in the development of 3D objects for use with the

IRIS's lighting capabilities is the calculation of polygon normals. There are many

techniques used to calculate such normals. These methods rely on the specification of

some "internal" or reference point in order to determine which of the two possible ori-

entations a calculated normal should take. When an inside point is specified for a 3D

42

object, the vast majority of polygon nonnals are oriented correctly. However, some of

the polygons may be oriented in such a way relative to the reference point that their

normals are 180 degrees out of phase. These polygons with their reversed nonnals

are easy to spot when the lighted object is viewed, as the polygon is black instead of

its intended color. A way was needed to interactively identify these polygons and re-

verse their normals, that is, to re-orient the normal 180 degrees into the proper

direction.

Finally, variable resolution display is a capability of preview. Interactively deter-

mining which polygons, lines and surfaces to show in a given object resolution is a

highly useful feature. This feature allows the user to graphically "create" objects of

lower resolution based on ,hat is already in the object file. Permitting the user to

modify the object as it is viewed in order to create varying object resolutions is an in-

telligent and meaningful way to create files of objects for different desired resolution

levels in any sinulation.

B. HOW OBJECTS ARE DISPLAYED IN PREVIEW

As an object is read in from the OFF, the dynamnic structure discussed in chapter

4 is created. However, this time each line, polygon and surface is sized and put in the

draw list in descending size order. Materials and colors are inserted in the draw list

on an as needed basis, as explained in the following paragraphs.

The question arose as to how to determine line, polygon and surface sizes. The

method being utilized at present is a rough approximation. First, all lines are consid-

ered to be of size zero (0), so that they are stored last in the draw list and displayed

only at highest resolutions. Second, polygon and surface sizes are determined by us-

ing a rough approximation of their volume, determined by their respective minimum

and maximum x, y and z vertex coordinates. As each polygon or surface is read from

43

the object data file, its vertices are sent to a calculation routine. This routine deter-

mines the minimum and maximum x, y and z values from all the vertices in that poly-

gon/surface. The difference between the minimum and maximum values in all three

directions is calculated. These differences are then squared, added together, and the

square root of the sum taken. This final square root value becomes the poly-

gon/surface size.

Resolution, in the sense of 3D objects, works much the same as the resolution

levels utilized in the terrain display of current NTPS simulators. Objects at a

"distance" in the picture displayed do not need to be drawn in as great a detail. This

is most readily accomplished by reducing the number of polygons, surfaces and lines

drawn when displaying the object. It makes intuitive sense that the "smaller" poly-

gons and surfaces would "disappear" in the distance first, and thus the "farther away"

the object is in the display, the fewer "small" polygons or surfaces should be drawn.

Lines should only be drawn when the highest resolution is desired.

The insertion of material or color nodes in the draw list is determined by the last

such node encountered in the list and the most recent setting as ordered by the object

data file. That is, a current material and a current color pointer are maintained by the

program, and modified as setmaterial and setcolor tokens are encountered. When

line, polygon or surface nodes are to be inserted in the draw list, the draw list is

searched from the head forward, looking for the insertion position by element size.

The routines used in this operation are found in files insertelements.c and extrain-

sert.c. As material and color nodes already in the list are encountered, a list materi-

al and list color pointer are maintained, showing the most recently encountered

material or color in the draw list. When the insertion point for the line or polygon or

surface is located, the current material (for polygons and surfaces) or current color

(for lines) pointer is checked against the value of the list (color or material) pointer.

44

If they agree, the new node is simply added at that point. Figure 6.1 illustrates such

an insertion.

In the event that the current and list pointers do not agree, two nodes must be in-

serted in the draw list around the new line/polygon/surface node. First, the current

material or color must be added at the insertion point in the draw list, so the new

line/polygon/surface is displayed in the appropriate color. Then, since the elements

immediately following the new node are to be drawn in the present list material or col-

or, a copy of the list node must be added after the new line/polygon/surface node.

This completes the insertion, as Figure 6.2 illustrates.

A count of lines, polygons and surfaces is taken. These totals are displayed in

the preview program help window. The total of polygons and surfaces is taken to de-

termine the maximum resolutionlevel needed. This total is divided by the resolu-

tion_factor, an integer variable currently set to 10. Thus, for an object consisting of

127 polygons and 15 surfaces for a total of 142 elements, a maximum resolutionlevel

of 15 (142/10, rounded up to include all elements) is required.

In the preview program, each line, polygon and surface structure has a field la-

beled 'active.' It is an integer field, used as a boolean value. Initially, all elements

are marked as 'active' by asserting TRUE in all active fields. Thereafter, the mouse

is used to increase or decrease resolution levels, or the interactive resolution menu

and slider bars are used to select or delete elements from view. Lines, polygons and

surfaces are marked as inactive (or reactivated) as chosen by the user. At all times,

only elements whose 'active' field is TRUE are displayed in the viewport window.

The lighting model and lights used in the preview program are determined by a

call to a set up routine. This routine is found in file setup.c. Default values are avail-

able and used for either the lighting model or the light(s) if either attribute is not spec-

ified in the object file.

45

Portion of current draw list prior to insertion

.rretmaterial to data to data line to datal.structure J surface structure [structure

to data to data to data
surface structure pourfa structure structure

tf

insertion point for new polygon

current material = gold list material = gold

Same portion of current draw list after insertion

.... teria tordatae > to data lie to data ,

Fg rue. oe surface structure ti lrucrate

to data to data to datace structure plgn structure srae structure

color to data ° ° °

structure

current material =gold list material = gold

Figure 6.1 Node Insertion with Same Material Illustrated

46

Portion of current draw list prior to insertion

.. . mtral to data to data line to data
ae structure surface structure structure

c-urufent maeralne plyo

to data to data color to datasurface structure surface structure structure

lis materialo-

insertion point for new polygon

currentmaterial = gold listmaterial = "blood red"

Same portion of current draw list after insertion

.... 0 material to datasurfac4 to data line to datastructure I srae structure structure

to data I to data odatasurface strucue " maeI structuref" polygon tstructure

curent material new polyon

material to daasrae odt : color to data•

structure structure structure J--

list material

currentmaterial = gold listmaterial = gold

Figure 6.2 Node Insertion with Different Materials Illustrated

47

The first item operated on by setup() is the selection of the lighting model to

use. If one or more is specified in the object file, the head pointer of the modeldefs list

in the object's header structure will not be NULL. The lighting model (first model, if

more than one are specified) is pointed to by the head modeldefs list pointer. If none

are specified, a default model is created for use. The current lighting model is then

bound through IRIS lmdef() and lmbind() calls. Figure 6.3 presents the relevant code.

Next, the setup() routine finds and activates all lights specified in the object file.

Currently, the IRIS lighting capabilities allow only eight lights to be active, so the set-

up routine only activates the first eight lights in the lightdefs list, even if more are

found in the list. If no lights are found in the list, a default light is created and inserted

in the lightdefs list. Then, lights LIGHTO LIGHT7 (maximum) are defined and

bound based on the hgats in the list, using iRIS lmdef() and Inbind() calls. Figures

6.4 and 6.5 show the code used for this operation.

The current material is defined and bound based on the first material found in the

object's materialdefs list. As expected, if no materials were found in the file (hence

none hi the list), a default material is created for use. The current material is then de-

fined and bound through use of the IRIS lindef() and lmbind() calls. Figure 6.6 con-

tains the relevant code.

Lastly, the current color is defintu, If no colors were provided in the file, a de-

fault color is created and set as the current color. If one or more colors are defined in

the object file, the first color in the colordefs list is set as the current color. Figure 6.7

contains the code for this operation.

Once the lighting model, lights, current material and current color have been es-

tablished, the object is ready for displaying. The draw list is traversed in order from

head to tail. Each node's dtpe is checked and action taken appropriately.

48

int setup(hdr)

OBJECT-_HEADER *hdr;

float thismodeit 10]; /* floating array of lighting model attributes */
float thislight[14]; /* floating array of light attributes */
float thismaterial[191; /* floating array of material attributes *
int theselights[9]; /* array of active lights *
int i; /* loop counter */
model-ptr temp; 1* pointer to model definition structure ~
light-ptr tempi: /* pointer to light definition structure */
material-ptr temp2; /* pointer to material definition structure ~
colorptr temp3; /* pointer to color definition structure */
doublejptr thisnode; /* pointer to generic doubly-linked list node *

P~ set focus to viewport window */
winset(windowlist[VIEWPORT]);

/* set thisnode to first model node -- the one to use ~
thisnode = hdr->head_modeldefs;

P* make sure there is a model definition provided *
if (thisnode = NULL)(

temp = initialize -model-def(temp);
printf("No lighting model specified in Object File.,"3;
printf("Default lighting model created and used.\n")-

/* otherwise, assign to thisnode's data pointer*1
)else [
temp = (modelptr)DATA(thisnodc),
/P end if then else */

P~ now set attributes inic model attribute array ~
thismodel[l] AM3ENT;
thismodel[ll I temp->ambient[0];
thismo1i';h 2I temp->ambient[l];
thi-..iodel[3] =temp->ambient[2];

thismodel [4] LOCAL VIE WER;
thismodel [5] temp->localviewer;
thismodel[61 ATTENUATION;
thismodel [7] temp->attenuation[0];,
thismodel(8] temp->attenuation[I];
thismodel[9] =LNULL,

/* set and bind current light model *
Imdef(DEFLMODEL,CURRENThMODEL, I 0,thismodcl);
Imbind(LMODEL,CURRENTLMODEL);

Figure 6.3 Lighting Model Setup Code

49

f* now to lighting *

/* set all lights in the array FALSE, inactive, initially

theselightsfil = FALSE;

/* assume all lights provided for in the object's file are to be *
/* active. Therefore, bind the first eight definitions as active ~

/* initialize counter */
/* start at 1 -- light index 0 defined by IRIS -- can't change *
i= 1;

/* if no lights in list, create default *
if (hdr->head - ightdefs = NULL)

tempi = initialize -light-def(templ),
printfC'No lights specified in Object File .Nn'):
printf(" Default light created and uscd.\n");
double-insert(&hdr->head-ightdefs,(generic ptr)templ ,LIGHTDEF);

)/* end if */

/* set thisnode to first node in light def list"'
thisnode = hdr->head-lightdefs;

while (thisnode != NULL) (

/* Set tempi to current node's data pointer *

tempi = (light-ptr)DATA(thisnode);

/* show light i is defined -- to be made active ~
thesclightsfi] = TRUE;

/* set attributes of the light def array ~
thislightiOl = AMBIENT;
thislight[II] temp I->ambient[0I;
thislight[2] = tempil->ambient[1I];
thislight[3] = templ->ambient[21;
thislight[4] = LCOLOR;
thislight[5] = templ->lcolor[O];
thislight[6] = templ->lcolorrH,;
thislight[7] = templ->color[21;
thislight[8] = POSITION;
thislight[91 = templ->position(01;
thislight[101 = tempi ->positiont 11;
thislightf IlIl = temp I ->position[21;
thislightt 12] = temp I ->position [31;
thislightf 13] = LMN*ULL;
lmdef(DEFLIGHT,i, 14,thislight);

Figure 6.4 Partial Listing of Light Setup Code

50)

/* increment counter and move to next light in list ~

thisnode = NEXT(thisnode);

1/* end while */

/* for each light defined, do the binding to turn them on ~
if (theselights[I])

lmbind(LIGHTO, I);
if (theselights[2])

lmbind(LIGHTI ,2);
if (theselights[31)

Imbind(LIGHT2,3);
if (theselights[4])

lmbind(LIGHT3 ,4);
if (theselightsl5])

lmbind(LIGHT4,5);
if (theselights[6])

'Imbind(LIGI-T5,6);
if (theselights[71)

lmbind(LIGHTr6,7);
if (theselights[8])

Imbind(LIGHT7,8);

Figure 6.5 Remainder of Light Setup Code

51

1* now, set up first material definitions and bindings *

/* set thisnode to first material definition ~
thisnode = hdr->head-materialdefs;

/* if no materials in list, get default *
if (thisnode == NULL) (

temp2 = initialize-material-def(temp2);
prinif("No materials specified in Object File.\n");
printf("Default Material Defined and Used throughout.\n");

/* otherwise, set temp2 to thisnode's data pointer ~
Jelsef
temp2 = (materialptr)DATA(thisnode);

I/* end if then else */

/* now set material definition array characteristics ~
thismateriallOl =EMISSION;
thismateriallil] = temp2->emission[O];
thismaterial[2) = temp2->emission[I];
thismaterial[3] = temp2->emission[2);
thismaterial[4] = AMBIENT;
thismaterial[51 temp2->ambient[O];
thismaterial[6] = temp2->ambicnt[11;
thismaterial[71 =temp2->ambient[21;
thismaterial[81 = DIFFUSE;
thismaterial[91 = temp2->diffuse[O];
thismaterial[1O] temp2->diffusce 1];
thismaterial (I I I =temp2->diffuse[2];
thismaterial[121 =SPECULAR;;
thismaterialI13S - iap2 >cpecular[O];
thismaterial[14] temp2->specular[I];
thismateriallll5] temp2->specularl2];
thismaterial[161 SHININESS;
thismaterial[l7] =temp2->shininess;,
thismaterialt 18] LMINULL;

/* define and bind current material *
lmdef(DEFMATERIAL,CURRENTMATERIAL,1I9,thismaterial);
Imbind(MATERIAL,CURRENTMATERIAL);

/* set global current material pointer *
current-material = temp2;

Figure 6.6 Current Material Setup Code

52

/* finally, set current color to first color, or default */

thisnode = hdr->headcolordefs;

/* if no colors in list, get default */
if (thisnode == NULL) I

temp3 = initializecolor def(temp3);
printf("No colors specified in Object File.\n");
printf("Default Color Defined and Used throughout.\n");

/* otherwise, set temp3 to thisnode's data pointer */
else t
temp3 = (color-ptr)DATA(thisnode);

}/* end if then else */

/* set global current color pointer *1
current_color = temp3;

Figure 6.7 Color Setup Code

53

Nodes that are materials or colors cause the current material or current color

global pointers to be reset to point to the new material or color. Polygons and surfac-

es, if active, are drawn using either standard IRIS 'bgnpolygono ... endpolygono' or

'bgnclosedline() ... endclosedlineo' sequences. Whether polygons or lines are drawn

is dependent upon whether or not the user has selected the wire frame option.

Prior to drawing any polygon or surface the current material is checked against

the last bound material. If the current material is not the most recently bound mate-

rial, a call to bindcurrentmaterial() is made to update the material definition being

used in the IRIS graphics pipeline.

Lines can not be drawn with lighting active on the IRIS, so when lines are en-

countered lighting is turned off. Lines are then drawn in the current-color by issuing a

c3f() call to the IRIS. Each line segment specified in the line is drawn by the stan-

dard 'bgnline() ... endlineo' sequence. Lighting is then again turned on by a call to

lmbindO with the CURRENTLMODEL. When polygons and surfaces are drawn as

lines due to the wire frame option, the color provided to the c3fo call is the diffuse col-

or specified for the current material. Lighting is turned off when the wire frame option

is selected and turned back on when it is deselected.

C. THE OBJECT ORIGIN

All objects are assumed to be centered about the origin, (0.0 0.0 0.0), unless oth-

erwise specified by an origin token in the object file. The object is displayed in the

viewport window such that the object origin is at the center of the graphics window,

which in this case is the 3D origin, (0.0 0.0 0.0). When the object is drawn, a push-

matrix() and translate() are ordered to position the object's origin at this center. The

translate takes as its arguments the negative (reverse) values of the specified object

54

origin. After the object is drawn, a popmatrix() call returns the stack to its pre-draw-

ing status.

D. MODIFYING ACTUAL OBJECT DATA

The actual object data can be manipulated in the three basic ways -- translation,

rotation and scaling. Rotation and translation can be done about or along any single

axis at one time, and scaling can be done along any single axis or along all three axes

simultaneously.

Since the actual modification of the object data is done for the purpose of

"creating" a new object, these operations require great precision. As this is the case,

slider bars are not used for input in data modification. Instead, in each instance a new

window appears, seeking keyboard input of exact values to use in modifying the data.

For rotation, the input is expected in floating point degrees, either positive or nega-

tive. Rotation follows the "right hand rule" for determining positive direction about

each axis. For translation, the input is expected to be a floating point number. For

scaling, the input is expected to be a floating point number other than 0.

Once the input is received, the draw list is traversed, and scaling, translation or

rotation is performed on each vertex of each element (line, polygon, surface). For ro-

tation, the normal for each polygon and each surface vertex is also modified. If nega-

tive scaling is done, the polygon and vertex normals are reversed. For translation,

the object's origin is also modified. The object is then re-displayed in the viewport

window. The user will note the updated minimum and maximum values displayed in

the help window, and, in the case of translation, the updated object origin.

55

E. RESOLUTION LEVELS

The activation of elements and the overall resolution scheme was presented in

section B of this chapter. This section discusses the actual method of modifying reso-

lution levels.

When the main help and tools windows are visible, the help window display indi-

cates that the left mouse decreases the resolution level and the middle mouse in-

creases the resolution level. Each decrement in the resolution level removes one

resolution jactor's worth of elements from the display, always removing the smallest

elements first. Each increment in the resolution level brings back one resolu-

tionJactor's worth of elements to the display. The current resolutionlevel is dis-

played at the bottom of the main help window-

Once these mouse buttons have given the user a rough approximation of the res-

olution desired, the actual resolution can be fie tuned by use of the RESOLUTION

option in the main tools window menu. Selection of this option puts two slider bars in

the tools window, and the appropriate display in the help window. The left slider is

for selecting polygons; the right slider for selecting surfaces.

Only the most recently used slider bar wili have its current element highlighted.

That is, if the polygon slider bar is moved, the current polygon is highlighted. If the

surface slider bar is moved, the current surface is highlighted. The current polygon is

always highlighted in white; the current surface is always highlighted in yellow. Each

is also ringed by a red border line drawn around its perimeter. Use of the middle

mouse increments BOTH sliders simultaneously, one element for each press of the

button.

All polygons and surfaces in the object are highlighted as they are selected, even

those not currently ACTIVE in the display. To see an element not currently

56

displayed, highlight it and choose SELECT THIS (polygon/surface) from the menu

now available in the tools window. Selecting ai element makes it active until it is de-

leted by another menu selection or by reducing resolution again at the main level. To

delete an element from the picture, highlight it and choose DELETE THIS

(polygon/surface) from the menu available in the tools window. Deleting an element

makes it inactive until it is SELECTED to be active again by the menu, or by an in-

crease in resolution level performed at the main level. Continue in this fashion until

only the desired elements are actively displayed in the viewport window. The user

can exit the resolution option to rotate or translate the object for a different view, then

reenter it to continue modifying the resolution.

F. SAVING THE MODIFIED OBJECT

There are two options for saving the previewed object to a new file, both avail-

able at any time from the menu in the viewport window. These options both write the

output to a file with the same name as the input object file but with the tag ".new" ap-

pended to it. The output file has the same format, ASCII or binary, as the input file.

The first option saves ALL the current object data, even those elements not cur-

rently displayed. This is the option to select if the entire object has been rotated,

scaled or translated.

The second option saves only those elements currently displayed in the viewport

window. This option is used for saving an object in a different resolution, regardless

of whether it has been otherwise transformed or not.

It is important to note that this saving option can be invoked repeatedly through-

out the course of the preview program. If a mistake is made in saving a file that

needs to be further modified, the modifications can be made and the object saved

again. The output file always contains the most recently saved version. Hence, to

57

make multiple resolution copies from one use of preview, the output file should be

moved to a different name by use of another terminal prior to performing any addition-

al saves.

58

VH. INTEGRATING OBJECTS INTO OTHER PROGRAMS

The primary goal of this research was the development of a file format for 3D ob-

jects that would permit the display of objects in any simulator or other program. The

preview tool and its associated routines contain some level of complexity beyond

that simple goal, in order to permit object modification. This chapter presents the sim-

pler routines needed to integrate objects in the OFF format into other programs.

A. THE MAJOR DIFFERENCES

The major differences between the routines used in the preview tool and normal

program integration lie in the fields present in various element structures. The struc-

tures used in the routines needed for integrating objects into another program are sim-

pler than those structures utilized by the preview tool. Also, the object does not

have its lines, polygons or surfaces sized and inserted in the draw list by size order.

The line, polygon and surface structures, defined in file filespec.h, each lack the

'size' and 'active' fields found in the preview tool. The tilespec.h file found in the

offl3dintegration directory has these structures redefined from those in the same file

in the offitoolsipreview directory. Similarly, the routines found in the file initializ-

ers.c in the two directori, s reflect the different structures defined. The initializer rou-

tines create new structures when called, and assert default values into each field of

the structure. Figures 7.1 and 7.2 contain excerpts of the relevant code from the files

in the offl3dintegration directory.

The main object drawing routine, drawobjecto, is found in the file drawobject.c.

In the integrated version, there is no need to check the active field of lines, polygons

or surfaces. In fact, such fields do not exist. Nor is there any option to draw the

59

struct polygonjdef /* polygon of vertices and a normal */
I

int numitems; /* number of vertices plus normal */
float normal[31; /* polygon surface normal xyz */
twodimarray data; /* pointer to start of data triples */

1;

struct linedef /* line defined by vertices to call to bgnlineiendli'c */

int numitems; /* number of vertices plus normal */

twodimarray data; /* pointer to start of data triples */
I;

struct surfacedef /* list of surface definitions */
I

int numitems; /* number of data sextuplets */
twodimarray data; /* pointer to data list */

II;

Figure 7.1 Polygon, Line and Surface Structure Definitions

6(

/* this routine allocates a surface def structure, puis default values in
its slots, and returns a pointer to it as its value. *

sufface-ptr initialize-surface~def(ptr)

surface-ptr ptr;

ptr = (struct surface-def *)malloc(sizeof(struct surface-def));
ptr->data = NULL;
ptr->numitems = 0;
return(ptr);
/*P end initialize-surfacedef *

/* this routine allocates a polygon def structure, puts default values in
its slots, and returns a pointer to it as its value.

polygon-ptr initialize-polygon-def(ptr)

polygon-ptr ptr;

ptr = (struct polygon-def *)malloc(sizeof(struct polygondefO);
ptr->data = NULL;
ptr->numitems = 0;
ptr->normalIOI = 0.0;
ptr->norrnal [I] 0.0;
ptr->normal[21 0.0;
return(ptr);
}/"' end initialize-polygon-def *

/* this routine allocates a line def structure, puts default values in
its slots, and returns a pointer to it as its value.

line-ptr initialize-line_def(ptr)

line-ptr ptr;

ptr = (struct line def *)malloc(sizeof(struct line def));
ptr->data = NULL;
ptr->numitems = 0;
return(ptr);
/* end initialize-line-def *

Figure 7.2 Initializer Code for Lines, Polygons and Surfaces

61

object in a wire frame version. Hence, these checks have been removed from the dra-

wobject.c version found in the preview directory. In the integrated version, all ele-

ments of the object are drawn each time drawobjecto is invoked.

B. THE ROUTINES NEEDED

All of the routines that might be needed are included in the directory

off/3dintegration. It is possible that not all files will be needed, as outlined in the fol-

lowing paragraphs.

Every program wishing to integrate 3D objects from OFF files will require the

following routines: filespec.h, filelex.c, allocatearray.c, drawobject.c, get-

floats.c, initializers.c, insertelements.c, iistroutines.c. Additionally, at least one

of the series of routines to read either an ASCII or a binary format file must be includ-

ed. These are presented below. There are a small number of global variables defined

in the file filespec.h. These must be checked to ensure they do not conflict with any

other variables chosen for the user's program(s). Additionally, each of the included

files should be checked for the names of routines they contain. A listing of all such

routines is provided at the head of each file. Again, conflicts must be avoided be-

tween function names. Finally, for the global variables to be properly defined in the

main program routine, the statement #define MAIN should be included in the C lan-

guage module in which the user has defined the main() function. Figure 7.3 illustrates.

The routines needed to read an ASCII file are contained in the files readascii.c

and asciiread.c. Similarly, the routines to read from a binary file are contained in

readbinary.c and binaryread.c. If the user knows for certain that he will only be

reading from one such file type, only those routines need be included. If the user is

unsure, or may be reading from both types within his program, he should then include

the file checkfiletype.c. This file contains routines that do all necessary checking for

62

file type, and invoke the appropriate reading routines based on that type. Figures 7.4

and 7.5 show the file type checking code.

#define MAIN /*define MAIN first for global variable recognition */
#include filespec.h /* has definitions needed of variables and structures */

/* reminder to link together with my program the compiled versions of
filelex.c drawobject.c allocatearray.c getfloats.c
initializers.c insertelements.c listroutines.c

or they may be included here */

/* my main simulator routine */
main()

{
....... (general program code)}

Figure 7.3 Sample Beginning Program Code with Included Files

One final file may be of interest. The file setup.c contains code to bind the light-

ing model, lights, current material and current color used to those specified in the ob-

ject file. More often than not, most simulations will already have their model and

lights defined, and will only be interested in drawing objects under the established

conditions. However, should the user wish to use the lighting model and light(s) de-

fined in the file, they should include this routine as well. With this file included, a call

to the routine setupo prior to drawing the object will achieve the desired result.

C. ACTUAL IMPLEMENTATION

As each object is read in from a standard object file, it is stored in a series of

linked lists associated with an object header structure. Therefore, the process of

reading and displaying objects is extremely straightforward.

One OBJECTHEADER should be defined for each object desired for display in

the program. Then, at some point prior to the actual graphics display loop in the

63

/* this routine checks a file to see if it is an ASCII or binary type */
int checkjfiletype(filename)

char *filename;
{
char filestr[90]; /* string to be created from filename */
char instrings[901; /* pll z to read from temp file */
FILE *infile; /* FILE pointer to input temp file */
int whichtype = UNKNOWNFILE; /* integer flag for file type */
int notdone = TRUE; /* flag for loop control */

/* copy filcname to filestr, append output to junkfile */
strcpy(filestr,"file ");
strcat(filestr,filename);
strcat(filestr," > checktypejunkfile");

/* invoke call to "file" at system level */
system(filestr);

/* now, go read what "file" did! */
infile = fopen("checktypejunkfile","r");

Figure 7.4 First Section of File Type Checking Code

64

while (notdone){

/* scan file -- check for EOF by fscanf returning < 0
if (fscanf(infile, "%s" ,instrings) < 0)

notdone = FALSE;

/* check for ASCII or DATA key words being read *
if (!strcmp(instrings,"ascii"))

notdone = FALSE;
whichtype = ASCIIFILE;

4else if (! strcmp(in strings, "data"))
notdone = FALSE;
whichtype = BINARYFILE;

I P~ end if then else *

4/* end while */

/* close the file *
fclose(infile);

/* via system level call, remove temp junk file *
system("rm checktypejunkfile");

/* return result */
retum(whichtype);

4 * end check file type *

Figure 7.5 Remainder of File Type Checking Code

65

program, invoke calls to the appropriate file reading routines. The choices include rea-

dascii0, readbinaryo, or read-objectfileo. Each of these routines takes as their ar-

guments a hdr pointer (where hdr is declared as: OBJECTHEADER *hdr) and a

file name fname (where fname is declared as: char *fname). Figure 7.6 shows the

code for the routine readobjectfileo.

Thereafter, setupo can be used to establish the IRIS lighting model and light(s)

as defined in the object file of choice, or the object(s) can be drawn using lighting con-

ditions otherwise established for the program. Graphics focus should be set to the

desired display window, and all translations and rotations performed so that the sys-

tem transformation stack has the object origin positioned in the desired location. At

that point, a call to drawobjecto, with a hdr pointer as argument (again, hdr is de-

clared as: OBJECTHEADER *hdr) will draw the specified object in the graphics

window. This process can be repeated in different positions for multiple copies of a

single object or in various positions with various objects to obtain the desired pic-

ture. Figure 7.7 provides some sample code.

One important note should be observed at this point. The origin of the object is

accounted for by the drawobject0 routine. That is, if the specified origin of the object

in the file is other than (0.0 0.0 0.0), the drawobject0 routine performs appropriate

transformations so that the object is drawn about its specified origin at the location

desired. In other words, the user should not be concerned with obtaining the object's

origin and trying to account for it in the program prior to calling drawobjecto.

66

/* this routine lets thc user specify an object file to read, and */
/P reads that file froia memory into the object structure */
/* pointed to by hdr. It initializes the object header, and calls a */
/* routine that determines the input file type. */
int readobjectfile(hdr,filename)

OBJECTHEADER *hdr;
char *filename;

int whichtype; /P flag to indicate type of input file */

/* initialize header */
initializeheader(hdr);

* get file type for filename */
whichtype = checkfiletype(filename);

/* now, read into hdr based on file type */
switch (whichtype) (

case ASCIIFILE:
readascii(hdr,filename);
retum(TRUE);
break;

case BINARYFILE:
readbinary(hdr,filename);
return(TRUE);
break;

case UNKNOWNFILE:
printf("\nMAJOR ERROR! !M");
printf("Can not read file >>> %s\n",filename);
printf('nFile must be in standard ASCII or BINARY file format.\n");
printf("Check filename and try again.\nvn");
return(FALSE);
break;

I /* end switch */

1 /* end read objectfile */

Figure 7.6 Read Object File Code

67

/* sample use of integrated object drawing routines */

/* we have assumed that the necessary files have been linked at compile
time of the main program */

#define MAIN
#include filespec.h

/* my simulator code */
main()
{

OBJECTHEADER mysubmarine;
OBJECTHEADER mycarrier;

...... (other declarations)

..... (preliminary simulator code prior to graphics display routines)

/* I have an object in some format in file Submarine.ohioclass */
read_object(&mysubmarine,"S ubmarine.ohioclass");

/* I know Kittyhawk.ascii is in ASCII file format */
readascii(&mycarrier,"Kittyhawk.ascii");

..... (more setting up of the simulator)

/* now, with the graphics window open and the proper translations */

/* and rotations done for object positioning, I can display my sub */
drawobject(&mysubmarine);
.... (other display code)

/* Now I wish to display my carrier at the current graphics position */
drawobject(&mycarrier);

..... (rest of simulator code)

Figure 7.7 Sample Use of Integrated Routines and Object Display

68

VIII. LIMITATIONS OF THE FILE FORMAT AND TOOLS

The initial conception of what the standard file format should be and might accom-

plish was different than the finished product. Perhaps these limitations can be

overcome by future research, or perhaps the expectations must be modified.

A. RESOLUTION

The very first conception of object resolution was that only one file needed to be

created for each 3D object. Thereafter, the object would be drawn to the desired reso-

lution by specifying some resolution level or factor when invoking the drawing routine.

The approach envisioned to accomplish this was the sizing utilized in the pre-

view tool. That is, order elements in an object by size and draw only some specified

number of the largest ones at various resolutions. However, it quickly became appar-

ent that this would create visible holes in objects that would be obtrusive and inap-

propriate for viewing.

Two ways were considered for overcoming this shortcoming. The first was to

somehow mark each element with the lowest resolution at which it should be shown.

Any resolution specified below that level would not display this element. This creat-

ed a great difficulty in determining how to specify such a marking, how to set the

marking for each element when creating or editing a file, and resulted in more informa-

tion having to be stored for each object.

The second alternative was the one decided on and implemented in the preview

tool. If more than one resolution of a given object were desired, that resolution could

be created interactively from a base object file using the preview program, then the

new resolution could be saved. Thus, when an object file is read into another program

69

or simulation for display, the entire object is displayed at all times. This eliminates

the need for any special marking of object elements, including the elimination of the

'active' and 'size' fields of ail element structures. Regrettably, this means a different

file must be created for each desired resolution level of a given object.

B. AUTOMATIC OBJECT GENERATION

None of the tools here lead directly to automatic generation of new 3D objects

from "parts" in existing files. However, it is not hard to envision how many aspects

of the preview selection and saving mechanisms could greatly aid such construction.

Assuming ASCII 3D object files are adequately commented, it would be relative-

ly easy to copy an existing object ASCII file to a new file, then delete all but a select

portion of that file. Hence, from a file containing an entire submarine, for example, a

file containing only a conning tower, or main hull, or nose section, etc., could be creat-

ed by simple use of a text editor.

Once enough objects were thus "dismantled" into piecemeal files, new objects

could be created by liberal use of the ASCII format's include feature in a new object

file. Further, each individual object "piece", in its own file, could be re-oriented,

scaled, and/or translated to created additional "building block" files. It is understood

that forthcoming research at NPS will look into such construction of objects from

"building block" files. Clearly, the standard file format has laid the groundwork for

such object construction.

C. PERFORMANCE DEGRADATION

Obviously, it takes longer to read an object from an ASCII or binary file to a dy-

namically created structure than to access an object coded directly into the program or

simulation. However, the actual time to access an object file and store the data into

70

the dynamic structure is minimal compared to the time to read the current data bases

from which the simulations draw their terrain data. Furthermore, all such terrain and

object file accessing takes place during simulation initialization and need never be

done again throughout the simulation run. There is no noticeable difference in perfor-

mance in drawing the object from the dynamic structure as opposed to drawing it from

a data structure within the simulator code.

71

IX. CONCLUSIONS AND FUTURE WORK

Perhaps the most surprising aspect of this research has been the discovery of

the ease with which all vehicles, vessels and other 3D objects currently in use for

NPS simulations can be converted to the standard file format. Currently, all platforms

used in the CCWF Submarine and Periscope View simulator have been converted to

the standard format, along with several other platforms from other NPS simulations

and IRIS demo programs. These objects can be found in the offl3dobjects directory.

Developing material definitions, and trying them on various platforms in the pre-

view tool program, has been extremely informative and beneficial. In a matter of

moments, by simple additions of defmaterial a' d setmaterial elements in the object

file, whole new materials can be tried for their suitability in general, and in the specific

object in particular.

The preview tool has proved invaluable at finding and correcting errant poiygon

normals in 3D objects. In fact, the current CCWF Submarine and Periscope View

simulation uses hard coded polygon normals that were verified and corrected by use

of the preview tool. At present, no NPS simulation has integratui 'Ge use of stan-

dard object files into their programs.

The conversion of the ASCII file fortmat to binarv has achieved a significant file

size compresion. Typically. depending on the number and type of tokens in the

ASCII file, a binary file size of between 45r(i:,, 4Y(,i of the ASCII file is achieved.

No peccific goals for compression were ci at the imeption ,f his rese:rch, but a re-

ducr , ii tf" etter than 5M)q is c nsidcrcd ,igni " .

As was mentioned, no current NPS simulation has integrated standard file for-

mat objects into their displays. This is mainly because each simulator is currently the

subject of ongoing research in other areas, such as basic simulator development or

networking. Future work in the OFF area should quickly concern itself with integra-

tion of objects into current and future NPS simulaions.

Finally, future effort could well be placed on developing some interactive tool to

construct new 3D objects from files of object "pieces", such as hulls, tracks, bodies,

superstructures, etc. Along with this, the development of a library of lights, lighting

models, material definitions, color definitions, and object "pieces" that have been tried

and found useful should be constructed. Files in this library could easily be included

in future object files.

73

APPENDIX A

THE ASCII FILI FFORMAT

The ASCII Object File Format (OI F) is a text file format which is case distinct. The file

consists of token strings and associated data values which are processed in order from file

beginning to EOF in one pass. The program utilized to accomplish this is the lexical analyz-

er module filelex.c, created by use of the UNIX system Lex tool. Tokens are read by calling

the routine yylex). Figure A. I illustrates a sample use of this lunction.

The file tokens are presented in the following paragraphs. Items in boldface are to be

typed as is, italics denote user supplied data. Names and strings are sequences of up to 200

characters which must be enclosed in double quotes ("') if the sequence contains

blanks/spaces. All numbers in parenthesis are the number ef floating point values expected

after the given property token, except where noted.

It is imperative that all floating point values contain a decimal point. Numbers without

decimal points will be treated as integers, and will cause errors when floating point numbers

are expected. For clarity, it is recommended, though not required, that floating point num-

bers have at least one digit in front of the decimal point, as in 0.3 instead of .3. Whole.

floating point numbers, such as 12, nmist be specified as 12.0.

Any group of floating point values expected together should be treatcd 'as a block of data

and should not be separated by comments or any other tokens.

title ob.ject name : object namen is a string giving the name of tlhe object defined in the

7.1

/* this routine writes the ASCII file title to the binary file */
writebinary-title(bf)

int bf;

int nexttoken; /* next token in the input stream */
int firsttoken = TOK_TITLE;
int titlesize;

/* get next token from input file */
nexttoken=yylex0;

/* should be an ID -- a "string" */
if (nexttoken==TOK ID) {

titlesize = strlen(id);
write(bf,&firsttoken,sizeof(int));
write(bf,&titlesize,sizeof(int));
write(bf,id,sizeof(char)*titlesize);

/* if not, error! */
else (
printf("ERROR -- no identifier after key token TITLE \n");
printf("No title written to binary filen");

retum(l);
} /* end write binary title */

Figure A.I Sample Use of yylexo Routine

75

date date string • string defining the creation date or last modification date of the file.

The date string is of the form dd mmm.... yyyy, where dd is a integer date (day), mmm... is a

text string for the month, and yyyy is any integer number indicating the year.

include filename : shift reading to new file given by file name. If file isn't found on

current search path, then look in the specified default directory (specified within the tools pro-

gramming). File_name must conform to UNIX file naming rules.

deflight lightname lightproperties specifies that the tokens and data up to the de-

fend token define properties of the light. Any properties which are not provided in the file's

light definition will be set to default values. Thus, not all properties need be specified. The

property tokens are given below. They have the same meaning as that given in the IRIS

manuals.

ambient (3) define the light's contribution to the ambient scene light.
lcolor (3) define the light's color.
position (4) define the light's position or direction.
defend (0) specifies the end of the current definition.

deflmodel modelproperties : tokens up to defend define properti,-, of liahting mod-

el. Not all properties need be specified, as in light definitions above. The following proper-

ties are allowed:

ambient (3) ambient light in the model.
localviewer (1) whether viewer position is local or infinite.
attenuation (2) lighting model distance attenuation factors.
defend (0) end of current definition.

defmaterial materialname materialjroperties • tokens up to the next defend define

the properties of the material to be associated with naterialname. The following tokens

are the valid material properties. Once again, not all need he specificd.

70

emission (3) define the material's emission color
ambient (3) define the material's ambient contribution color
diffuse (3) define the material's diffuse component color
specular (3) define the material's specular highlighting component color
shininess (1) define the material's shininess factor
alpha (1) define the material's alpha value
defend (0) end of cu.rent definition.

defcolor color-name r g b : defines a color for use in drawing object lines. The r, g and

b values are floating pointer numbers between 0.0 and 1.0, and will be utilized in an IRIS

c3fO call.

setmaterial materialname used to set the material for all following polygons and

surfaces until changed by another setmaterial.

setcolor color-name used to set the color for all following lines until another setcol-

or is issued.

defline # vertexlist used to specify a sequence of line segment vertices that will be

joined by the Iris command series 'bgnline endline'. Each vertex will be joined to its

predecessor by a line segment. For closed lines, repeat the first vertex at the end of the line

definition. The # is an integer value depicting the number of vertices, and the vertex-list is a

list of x y z triples specifying the x y z coordinates of each vertex.

defpoly normal # vertexlist : used to specify a polygon defined by three or more

vertices and having a single surface normal. Here normal is the x y z components of the poly-

gon's normalized (unit length) normal vector, # is the number of vertices defining the

polygon, and vertex list a list of x y z triples specifying the x y z coordinates of the polygon

vertices. Note that # does not include the normal in its count.

77

defsurface # vertexlist : similar to defpoly, but it defines a surface with vertex nor-

mals, where # is the number of vertices and vertex list consists of a series of x, y, z, i, j, k

sextuples defining the x, y, z coordinates and the i, j, k (unit length) normal components.

origin x y z : defines a new origin about which the object is centered. That is, the de-

fault object center is (0.0,0.0,0.0), but the object may be centered elsewhere by including

this option. This does not do a translate but merely relates the coordinates in the file to the

actual origin.

/* text *1 denotes comments as in C. Nesting of comments is not allowed. Com-

ments are allowed on separate lines, or at the end of a line, or anywhere comments would

normally be allowed in C. Comments within a block of floating point values will be ignored

and lost when converting an ASCII file to binary format. That is, any time n floating point

values are expected, such as after tokens like Icolor, ambient, emission, etc., or after def-

color name, or define A, there should not be any comments in those areas. Such comments

will be lost when converting from ASCII to binary formats and back. In short, do not put com-

ments inside of defpoly, defline, defcolor or defsurface declarations. Comments before or

after these are perfectly valid. Comments within defmaterial, defilmodel, or deflight should

be placed before or after keywords or at ends of lines, but not between expected float val-

ues. Also, the yylexO code will not recognize any comment that is more than 200 characters

long. Therefore it is suggested that all comments be limited to at most two lines.

Figures A.2 and A.3 contain a sample file in the ASCII OFF fomiat. This object file,

though meaningless if displayed, shows each of the object aarib'ites in use.

78

title "A Sample File Full of Garbage"

date 15 May 1989

/* define a material and a color */
defmaterial subsilver
ambient 0.400000 0.400000 0.400000
diffuse 0.300000 0.300000 0.300000
specular 0.900000 0.900000 0.950000
shininess 30.000000
defend

defcolor mytrialcolor
0.8 1.0 0.4

/* specify object origin */
origin 0.0 0.0 0.0

/* sample use of another defined file, containing more materials */
include mymaterials.sample

/* set color and material */
setcolor mytrialcolor

setmaterial subsilver

/* sample light */
deflight redlight
ambient 0.1 0.5 0.5
Icolor 0.0 1.0 0.0
position 13.0 35.0 10.0 1.0
defend

Figure A.2 Partial Sample 3D Object File in ASCII OFF Format

79

/* sample lighting moded defintion */
deflmodel
ambient 0.2 0.2 0.2

localviewer 1.0

attenuation 1.0 0.5

defend

/* define a surface */

defsurface

4
-20.000000 20.000000 20.000000 -0.333333 0.333333 0.333333

-20.000000 20.000000 -20.000000 -0.333333 0.333333 -0.333333

-20.000000 -20.000000 -20.000000 -0.333333 -0.333333 -0.333333
-20.000000 -20.000000 20.000000 -0.333333 -0.333333 0.333333

/* define a polygon */

defpoly

-0.402739 0000000 0.915315

3

0.000000 0.000000 0.000000

-0.500000 0.110000 -0.220000
-0.500000 -0.110000 -0.220000

/* define a line */

defime

3

4.593 2.2345 1.11197

0.0 0.0 0.0
1.234 4.567 3.34283

Figure A.3 Completion of Sample 3D Object File in ASCII OFF Format

80

APPENDIX B

THE BINARY FILE FORMAT

The OFF binary format relies upon associating integer values with tokens of the ASCII

format. These integer tokens are defined in the file filespec.h and are repeated below. Each

integer token has associated with it a predetermined amount of data in a specified format, as

outlined in the following paragraphs.

Strings stored in the binary format are not enclosed in double quotes, even if they con-

tain blanks/spaces. This is due to the fact that the binary file reading routines always take

as input a specified number of characters and do not rely on the quotes to identify the begin-

ning and ending of strings. Furthermore, the file conversion tool fileconvert automatically

encloses all identifier strings (titles, material names, color names, light names) in double

quotes when performing binary to ASCII conversion.

A. THE BINARY TOKENS

The following token definitions have been established in file filespec.h and are thus

provided to all routines concerned with reading or manipulating data or files in the standard

object format.

#define TOKTITLE I
#define TOKDATE 2
#define TOKCOMMENT 3
#define TOKDEFLIGHT 20

#define TOKDEFMATERIAI, 21
#define TOKDEFI.MODEL 22
#define TOKDEFCOLOR 23

#define TOKDEFPOLY 24

81

#define TOKDEFSURFACE 25
#define TOKDEFLINE 26
#define TOKALPHA 30
#defineTOKAMBIENT 31
#define TOK_ATTENUATION 32
#define TOKDIFFUSE 33
#define TOKEMISSION 34
#define TOKLCOLOR 35
#dcine TOKLOCALVIEWER 36
#define TOKPOSITION 37
#define TOKSHININESS 38
#define TOKSPECULAR 39
#define TOKDEFEND 40
#define TOKSETMATERIAL 50
#define TOKSETCOLOR 51
#define TOKORIGIN 60

B. LAYOUT OF THE BINARY FILE

The allowable items in the binary file have no specified order. That is, any item may

be placed in the file anywhere and it will not effect the reading of the file. However, polygon,

surface or line colors are dependent upon where they appear following the most recent set-

material or setcolor tokens. Consult Appendix A for further clarification.

The allowable items, and their required formats, are outlined below. The file reading

routines expect any binary file to have items in these formats, and deviations will cause er-

rors. Unless otherwise noted, order of elements within a specified item is important. Order

is not entirely important in lightdefs, modeldefs and materialdefs, as outlined in the following.

Title:
TOKTITLE sizeof(int)
Title Size sizeof(int) # characters in title
Title String sizeof(char)*Title Size character string title

82

Date:
TOKDATE sizeof(int)
Date Size sizeof(int) # characters in date

Date String sizeof(char)*Date Size character string date

Comment (/* */):
TOKCOMMENT sizeof(int)
Comment Size sizeof(int) # characters in comment
Comment String sizeof(char)*Comment Size character string comment

Light Definition:

TOKDEFLIGHT sizeof(int)
Name Size sizeof(int) # characters in light's name
Light Name sizeof(char)*Name Size light name string

-- the following blocks may occur in any order until TOKDEFEND --

-- comment block may occur repeatedly until TOKDEFEND --

TOKCOMMENT sizeof(int)
Comment Size sizeof(int) # characters in comment

Comment String sizeof(char)*Comment Size character string comment

TOKLCOLOR sizeof(int)
Color Array sizeof(float)*3

TOKAMBIENT sizeof(int)
Ambient Array sizeof(float)*3

TOKPOSITION sizeof(int)
Position Array sizeof(int)*4

TOKDEFEND sizeof(int)

Model Definition:
TOKDEFLMODEL sizeof(int)

-- the following blocks may occur in any order until TOK DEFEND --

-- comment block may occur repeatedly until TOKt)EFEND --

83

TOKCOMMENT sizeof(int)
Comment Size sizeof(int) # characters in comment

Comment String sizeof(char)*Comment Size character string comment

TOKLOCALV IEWER sizeof(int)
Localviewer Value sizeof(float)

TOKAMBIENT sizeof(int)
Model Ambient Array sizeof(float)*3

TOKATTENUATION sizeof(int)
Attenuation Array sizeof(float)*2

TOKDEPEND sizeof(int)

Material Definition:
TOI(_DEFMATERIAL sizeof(int)
Name Size sizeof(int) # characters in Material Name
Material Name sizeof(char)*Name Size Material Name String

-the following blocks may occur in any order until TOK_-DEFEND -

-comment block may occur repeatedly until TOKDEFEND -

TOKCOMMENT sizeof(int)

Comment Size sizeof(int) # characters in comment
Comment String sizeof(char) *Comment Size character string comment

TOKEMISSION sizeof(int)
Emission Array sizeof(float)*3

TOK_-AMBIENT sizeof(int)
Ambient Array sizeof(float)*l

TOKDIFFUSE sizeof(int)
Diffuse Array sizeoffloat)*3

TOKSPECULAR sizeof(int)

84

Specular Array sizeof(float)*3

TOKSHININESS sizeof(int)
Shininess Value sizeof(float)

TOKALPHJA sizeof(int)
Alpha Value sizeof(float)

TOKDEFEND sizeof(int)

Color Definition:
TOKDEFCOLOR sizeof(int)
Name Size sizeof(int) # characters in Color Name
Color Name sizeof(char) *Namne Size Color Name string
Color Array sizeof(float)*3 Color values 0- 1

Origin:
TOKORIG[N sizeof(int)
Origin Array sizeof(tloat)*3

Setcolor Definition:
TOKSETCOLOR sizeof(int)
Name Size sizeof(int) # characters in Color Name
Color Name sizeof(c har) *Name Size Color Name string

Setmaterial Definition:
TOKSETMATERIAL sizeof(int)
Name Size sizeof(int) # of characters in Material Name
Mvaterial Name si zeof(char) *Namne Size Material Name Str.'ng

Line Definition:
TOKDEFLINE sizeof(int)
Number of Vertices sIzeof~int) # of vertices
Vertices slzeof(float)*3*Number of Vertices Vertex Coordinates

85

Polygon Definition:
TOKDEFPOLY sizeof(int)
Normal Array sizeof(float)*3 Polygon Normal Coo.dinates
Number of Vertices sizeof(int) # of vertices
Vertices sizeof(float)*3*Number of Vertices Vertex Coordinates

Surface Definition:
TOKDEFSURFACE sizeof(int)
Number of Vertices sizeof(int) # of vertices
Vertices sizeof(float)*6*Number of Vertices Vertex Coordinates

followed by Vertex Normal Coordinates

86

APPENDIX C

UNDERSTANDING LEX

A. WHAT IS LEX

Lex is a program generator designed for lexical processing of character input

streams. Lex is a tool available from within the UNIX operating system which gener-

ates a lexical analyzer module in the C programming language. The source for Lex is

a high-level, problem oriented specification for character string matching, producing

code which recognizes regulai exprcssiont from an input stream. These regular ex-

pressions are specified by the user in the source code provided to Lex [Ref. 7].

For a fairly complete and elementary introduction to Lex and its uses, refer to the

publication "Lex - A Lexical Analyzer Generator" by M. E. Lesk and E. Schmidt. Re-

searchers at NPS may find this instructive manual in the on-line help section of the

VAX UNIX system of the Computer Science Department.

B. IMPORTANT FEATURES OF LEX

The lexical analyzer generated by Lex accepts ambiguous specifications and al-

ways matches the longest possible input at any point. The lexical analyzer performs

substantial lookahead but does not recognize any regular expression longer than 200

characters. Hence, it is not possible to write a lexical analyzer with Lex that can rec-

ognize two different regular expressions if one is contained in the other.

The Lex routine essentially generates a finite state automaton which recognizes

various regular expressions, or tokens. As each token is identified by the lexical ana-

lyzer the section of program code associated with that token, provided by the user, is

87

executed. Reading of the input stream is then resumed at the end of the last identi-

fied token.

C. THE USE OF LEX IN THE OFF

Because of the inherent capabilities of Lex, this tool was chosen to create a lexi-

cal analyzer capable of identifying the tokens in the OFF. The source code provided

to Lex is found in the file filelex.

Lex is case sensitive, and for readability lower case implementation of all tokens

was chosen. In most cases, tokens in the input stream merely cause an integer vari-

able to be returned by the lexical analyzer. In some instances, such as the recogni-

tion of an identifier (string) or comment, the regular expression discovered by th't

lexical analyzer is copied to a global 'id' string for use in the OFF programs.

The include token causes suspension of input from the current file. A temporary

storage structure is created, storing pertinent information on the current file. The in-

cluded file is then opened for input and read until an end of file condition there or until

another include is encountered. Once all input has been taken from the newest file, it

is closed, and the former file is restored as the input stream using the temporarily

stored information. Figures C. I and C.2 show the relevant code from the file filelex.

D. ADDING NEW TOKENS TO THE OFF

Addition of new tokens to the OFF is a straightforward process, if the program-

mer understands the Lex tool and its implementation. Careful study of the reference

document described in part A of this appendix is highly recommended.

Integers, alpha characters, alpha-numeric characters, comments, digits, floating

point numbers, UNIX file names, identifiers, quoted strings, new line and white space

have all been defined in Lex shorthand at the beginning of the filelex source code.

88

New tokens may incorporate these in their specification for concise and exact token

specification.

Desired tokens may simply be inserted among the existing tokens in the filelex

source code. The desired lexical analyzer program response should then be defined

according to the Lex syntax. This can simply entail returning another integer token

identifier or a more complicated program response.

Once all desired changes have been made to new or existing tokens, the module

filelex.c must be regenerated for use in the OFF program routines. The UNIX call to

generate this file has been included in the makefile in the OFF program directories.

It is: lex -t filelex > filelex.c.

89

include()

struct include-file *temp;
char filename[MAX..LINEI; /* file namne from lex plus default path */
FILE *f;

if (yylexo!=TOKID)
fprintf(stderr, >> %s, line %d:\n',more-files->name,yylineno);
fprintf(stderr,' missing file name after include directivc'\n');
return(O);

)elset
if (f = fopen(yytext,"r"))==NULL)

strcpy(filename,defaultpath);
strcat(filename,yytext);
if (f = fopen(filename,"r"))==NULL)

fprintf(stderr," >> %s : line %d :'.,more_file s- >name,yy line no);
fprintf(stderr," unable to open file => %s\n'1,yytext);
return(O);

temp = (struct include-file *)malloc(sjzeof(strijct include file));
temp->line-count = yylineno;
temp->name = (char *)malloc((yyleng+lI)*sizeof(char));
temp->riame = strncpy(temp->name,yytext,yyleng);
temp->f = f
yyin=f,
temp->next = more -iles;
more-files = temp;
1/* end if then else *

/* end include */

Figure CAI Code Executed for File Include

90

yywrap()I

struct include-file *temp;

if (more_files->next ! =NULL)
fclose(yyin);
temp = more-files;
more-files = more-files- >next;
yyin = more-files->f;
yylineno =more-files->line-count;

free(temp)
return(O);

}else
fclose(yyin)
end.ofjinput = TRUE;
return(l);

Figure C.2 Code Executed Upon End of File Condition

91

APPENDIX D

PREVIEW USERS MANUAL

A. AN OVERVIEW OF PREVIEW

The prcview program is a 3D object viewing and manipulation program designed

to interact with objects stored in an ASCII or binary version of the Object File Format

(OFF). Its purpose is to allow the viewing and modification of objects stored in the

OFF, thus permitting the user to interactively correct deficiencies in the object, verify

specified object attrihites (material definitions, lighting, etc.), and save any correc-

tions made.

The C language program modules upon which preview is based are located in

the offitoolsipreview directory, as is the executable module, preview. This directory

also includes a makefile for recompilation of the program module should future addi-

tions or corrections be made to the preview program.

B. HOW TO USE PREVIEW

Preview is invoked by entering the program name and providing the name of a

3D object file as an argument to the invocation, as in preview (filename). For exam-

ple, if the user wished to preview an aircraft carrier stored in the file carrier.nimitz, the

invocation would appear as: preview carrier.nimitz.

Preview does not care what the name of the file is, provided it is a UNIX accept-

able filename. Preview will determine if the file contains ASCII or binary data. If

the file is an ASCII file, preview will attempt to read the file's data in the ASCII

92

OFF. If it is a binary file, preview will attempt to read the file's data in the binary

OFF. If the file is neither an ASCII or binary file an error message will appear.

If the file specified in the call to preview is an ASCII or binary formatted file, but

not a 3D object in the OFF, numerous error messages will appear as the data is

read. If this occurs, it is a good idea to abort program execution by typing control-C.

However, actual errors in the object file's data will also generate error messages.

These should be noted so that the object file can be corrected.

The remainder of this appendix covers specific operations available within pre-

view once the program is actually in operation.

C. THE PREVIEW WINDOWS

Once the 3D object has been read from the specified file, three graphics windows

appear on the IRIS, completely covering the screen. The largest window, covering ap-

proximately the left two thirds of the screen from top to bottom, is referred to as the

"viewport" window. The 3D object is displayed in this window at all times.

The other two windows appear in the right third of the screen, each taking ap-

proximately one half of the screen height. The top of these is referred to as the

"tools" window and initially contains information telling where program options can be

selected.

The lower of these two windows is the "help" window and initially contains pro-

gram and object information. This information includes the number of lines, polygons

and surfaces in the object, and the number of each currently being displayed; the spec-

ified object origin; the minimum and maximum x, y and z values of the object; tne cur-

rent resolution level; and instructions on the use of the left and middle mouse

buttons. At all times in all windows, the right mouse button selects that window's

currently active menu.

93

D. OTHER WINDOWS

The viewport window always remains the same, displaying the object as it is

currently modified. The menu in that window likewise always remains the same.

A keyboard input window appears, contained entirely within the area of the view-

port window, whenever an object data modification option has been selected. When it

appears, it is the active window and does not disappear until keyboard input has been

completed. As soon as keyboard input has been completed, as discussed later, this

window disappears and the viewport window is again completely visible.

The tools and help windows change their display in response to options selected

by the user. At all times, the help window provides information pertinent to the oper-

ation selected and information on the current operations performed by the left and mid-

dle mouse buttons. The only option ever available in any help window menu is "Exit

Program."

The tools window either contains its main display or contains one, two or three

slider bars. The operations performed by the slider bars are always outlined in the

help window. The left mouse, held down, allows the cursor to move the slider button

over which it, the cursor, is positioned. Various menu options are available, depend-

ing upon which sliders are currently displayed in the tools window. However, the

"Exit Slider" option is always contained in the tools window menu when slider bars

are present.

E. SELECTING PREVIEW OPTIONS

As stated above, only the "Exit Program" ootion can be selected from the help

window menu. The viewport window menu always contains the same options. These

are shown in Figure D. 1.

94

Viewport Menu

Store ALL Current Revisions
Store DISPLAYED ELEMENTS Only
Turn Wire Frame ON
Turn Wire Frame OFF
Exit Program

Figure D.1 Viewport Menu Options

The majority of options are selected from the main tools window menu. These

are shown in Figure D.2.

Tools Menu

PICTURE: Change View
DATA: Modify Actual Object Data -m0b
NORMALS: Change/Reverse Polygon Normals
RESOLUTION: Select Elements to Display
Exit Program

Figure D.2 Main Tools Window Menu

Menu options are seleted by pressing and holding the right rouse button when

the cursor is in the window where the desired menu resides. Then, once the menu ap-

pears, the desired operation on the menu is highlighted by moving the mouse while

holding the right mouse button down. Finally, the option is selected by releasing the

right mouse when the desired option is highlighted.

Two menu options in the main tools window nenu have "roll-off" sub-menus.

These are indicated by a right arrow following the menu choice. This indicates the

need to "refine" the choice by selecting further options under the main menu option.

To do so, highlight the menu option required, then move the mouse to the ight. An-

other menu will appear. It may also contain a sub-menu, again indicated by a right

95

arrow. Continue this process until the final sub-menu appears, highlight the destied

option on it, then release the right mouse button.

Upon accidental menu activation, simply move the cursor until nothing is high-

lighted, then release the mouse button. This results in a "no choice" situation.

F. THE PREVIEW OPTIONS

1. Changing The View of the Object

The object, or "picture" seen in the viewport window, can be rotated or trans-

lated to provide a different viewing aspect or prspective. This option is the first

available choice in the main tools window menu. This option provides a roll off sub-

menu from which rotation or translation can be selected.

Once translation or rotation is selected, three slider bars appear in the tools

window, one for each axis. Moving each slider rotates or translates the object about

or along the indicated axis. The object moves in the viewport window as the slider

bar is moved. If the slider bar gets to one end of its span, the sliders can be "reset"

to the middle by selecting the "Reset Slider to Middle" option from the current tools

window menu.

Continue rotation and or translation of the object until the desired "picture"

is observed in the viewport window. Then. choose the "Exit Slider" option from the

current tools window menu to return to the main level. Figure D.3 shows the slider

bars menu available in the tools window when these sliders are active.

Your Options

Continue
Reset Slider to Middle
Exit Slider

Figure D.3 Slider Bar Menu

96

2. Object Data Modification

The object data modification option is one of the options at the heart of the

preview program. It allows actual modification of the data from the object file. Such

modification results in actual transformation of the object data stored in the dynamic

structure created by preview. Saving the file after such transformations creates a

new file with this modified object data.

This option is also selected from the main tools window menu. It consists of

two sub-levels of roll-off menus. The first level lets the user choose whether modifi-

cation is to be by rotation, scaling or 4ranslation. The second level then selects which

axis the modification should take place about or around. Only scaling can be per-

formed about all axes simultaneously.

Once the desired modification process has been selected, the keyboard input

window appears in the center of the viewport window. Keyboard input is now sought,

and an appropriate prompt appears in this new window. Only the minus (-) key and

the numeric keys above the standard keyboard are active, along with the delete key

and the return key. Enter the desired modification amounts, using the delete key to

correct errors, then press return whe.. the input is correct. The keyboard input win-

dow disappears, the object is modified, and the information displayed in the main help

window reflects the new values.

One important note needs to be made. The: object is always displayed with

its center in the middle of the viewport window, unless translated by the "pictare"

slider bars discussed previously. Hence, even if a ' odification by translation is per-

formed, the view in the viewport appears unchanged. However, note the new mini-

mum and maximum values in the main heir) window, and the new object origin there

as well.

97

If the user desires to save the new object data to a new file, he should he

aware of one important potential problem. If the object file rell,d oui the default origin

of (0.0, 0.0, 0.0) by failing to specify an object origin, the new file will likewise have no

specified origin despite the fact that a modification by translation creates a new object

origin. If such a modification is anticipated, the object file should contain a specified

origin, even if that origin is the standard (0.0, 0.0, 0.0). That way, should the object's

origin be modified by a translation, the new file will contain the modified origin when it

is saved. The other alternative is to remember what the new origin should be. Then

add it to the saved file once preview has been exited.

3. Reversing Polygon Normals

The "NORMALS: Change/Reverse Polygon Normals" option in the main

tools window menu causes one slider bar to appear in the tools window. This slider

bar is then used to select polygons in the object.

The current polygon is always highlighted in white, with a red border line

drawn around its perimeter. The slider bar starts with the number one at the bottom,

and the number of total polygons in the object at the top. As the slider is moved, the

current, highlighted polygon moves throughout the object. The slider bar is intended

for quick access and movement. However, when there are large numbers of polygons

in the object, it can be difficult or impossible to precisely position the slider bar to se-

lect the desired polygon. Figure D.4 shows the menu available in the tools window

when this slider is active.

Your Options

Ccr: -ue
E., 'G .Iider
Pevierr THIS POLYGON's Normal

F'igure D.4 Normal's Slider Bar Menu

98

At all times during this slider operation, the middle mouse button increments

the slider button by one. Therefore, use the slider to select a current polygon several

polygons "below" the desired polygon. Then fine tune the precise selection with the

middle mouse button. Notice that the number of the current polygon is always dis-

played on the slider button itself.

Once the desired polygon is highlighted, use the menu now available in the

tools window to "Reverse THIS POLYGON'S Normal". Notice that the polygon data

displayed in the help window shows the normal being reversed. Continue selecting

and reversing normals in a like manner. This slider can be exited by the "Exit Slider"

option in the tools window menu. The "picture" can then be rotated or translated to

see another aspect of the object, and more normal correction- made.

4. Object Resolution

When at the main level, use of the left and middle mouse buttons effect the

resolution level, as outlined in the help window. This permits quick, rough approxima-

tions of various resolution levels. Use these buttons to obtain a resolution as close

to the desired level as possible. After such a level is obtained, fine tuning can be ac-

complished with the "RESOLUTION: Select Elements to Display" option in the main

tools window menu.

Once this option has been selected, two slider bars appear in the tools win-

dow. They are similar in function to the normal's slider bar discussed in the previous

section. In fact, the left slider bar is for selecting a current polygon, and the right is

used to select a current surface. If either surfaces or polygons are not present in the

object, a zero (0) appeas at the top of the appropriate slider, and the slider is not

moveable.

99

Use these sliders to choose the surface or polygon to add or delete from the

present resolution level of the object. The current polygon is again highlighted in

white, the current surface is highlighted in yellow. Each has a red border around its

peiimeter. Note that only the most recently moved slider bar has its current element

highlighted. That is, if the polygon slider is moved, the current polygon is highlighted.

If the surface slider is moved, the current surface is highlighted. Use of the middle

mouse while these sliders are active increments both sliders simultaneously by one.

Figure D.5 shows the menu available in the tools window when these sliders are

active.

Resolution Menu

Continue -- Never Mind
Select This Polygon
DELETE This Polygon
Select This Surface
DELETE This Surface
Exit Resolution Sliders

Figure D.5 Resolution Slider Bars Menu

Once the desired polygon or surface has been highlighted it can be added to

the current resolution or deleted from it. These options are contained in the current

tools window menu. Continue to highlight and select or delete polygons and/or surfac-

es in a like manner. The sliders can be exited by the "Exit Resolution Sliders" option

in the current tools window menu. Ruiate and translate the object picture to see vari-

ous aspects, and continue to select or delete elements until the desired resolution is

obtained.

100

G. CREATING NEW OBJECT FILES

New object files are created by the save options available in the viewport win-

dow menu. The user can save either all object data, which should be done in the case

of object modification, or save only the currently displayed elements, in order to pre-

serve a new resolution of the object.

The new file created by preview is always in the same format, ASCII or binary,

as the input file for the object. The file name of the new file is the same as the input

file, with the tag ".new" appended to it.

Saving can be selected at any time when using preview, and can be selected re-

peatedly. Each save writes to the same file, so any mistakes can simply be corrected

and overwritten with no difficulty. However, should the user desire to make several

new files of various resolutions from one use of preview, the IRIS's side terminal

should be used to move the new file after each save before any additional modification

and saving occurs.

H. WIRE FRAME MODE

The final feature of preview is the wire frame option. As the name implies, this

displays the object in a "skeleton" or "wire frame" configuration, where each polygon

or surface is drawn as an outline instead of a solid piece. This option is selected from

the viewport window menu and can be selected at any time.

This option can be useful for determining where problems lie in connecting object

elements or in seeing where "holes" occur at a lower resolution level without having

to exit the resolution sliders. Additionally, it provides an interesting way to study the

complexity of an object composed of many hundreds of polygons.

The outline, or wire frame, of each polygon and surface is drawn il a color deter-

mined by the material characteristics that the polygon or surface would otherwise

101

use in normal viewing. For lines, the color is the defined and set color as appears in

the normally viewed object.

102

LIST OF REFERENCES

1. Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-Time Interactive
Three-Dimensional Flight Simulation System, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1987.

2. Oliver, Michael R., and Stahl, David J., Interactive, Networked, Moving Plat-
form Simulators, M.S. Thesis, Naval Postgraduate School, Monterey,
California, December 1987.

3. Adams, Rodney M., A Software Architecture for a Commander's Display System,
M.S. Thesis, Naval Postgraduate School, Monterey, California, April 1987.

4. Harris, Frank E., Preliminary W ork on the Command and Control Workstation of
the Future, M.S. Thesis, Naval Postgraduate School, Monterey, California,
June 1988.

5. Phillips, Charles E. Jr., and Weeks, Gordon K. Jr., Command and Control Work-
station of the Future Subsurface and Periscope Views, M.S. Thesis, Naval
Postgraduate School, Monterey, California, June 1989.

6. Silicon Graphics Inc., IRIS Users's Guide, v. 1, Mountain View, California, 1987.

7. Lesk, M. E. and Schmidt, E., Lex -- A Lexical Analyzer Generator, VAX/UNIX
System Manual, Naval Postgraduate School, Monterey, California, 1989.

103

INITIAL I)ISTRIIBUTION LIST

Defense Technical Intormation Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval P'stgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 200
Naval Postgraduate School
Code 52, Department of Computer Science
Monterey. CA 93943-5100

4. LCDR John M. Yurchak
Naval Postgraduate Schoe!
Code 52, Department of Computer Science
Monterey, CA 93943-5100

5. LT Steven A. Munson 2
U. S. Coast Guard Supply Center Curtis Bay
Baltimore, MD 21226-1792

6. John Maynard
Naval Ocean Systems Center
Code 402
San Diego, CA 92152

7. Duane Gomez
Naval Ocean Systems Center
Code 433
San Diego, CA 92152

8. James R. Louder,
Naval Underwater Systems Center
Combat Control Systems l)epartmcnt
Building 1171/1,
Newport, RI 02841

I)4

9. Superintendent
Attn: Research Administration, Code 012
Naval Postgraduate School
Monterey, CA 93943-5000

105

